992 resultados para PHOTONIC CRYSTALS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have observed periodically aligned nanovoid structures inside a conventional borosilicate glass induced by a single femtosecond (fs) laser beam for the first time, to our knowledge. The spherical voids of nanosized diameter were aligned spontaneously with a period along the propagation direction of the laser beam. The period, the number of voids, and the whole length of the aligned void structure were controlled by changing the laser power, the pulse number, and the position of the focal point.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

通过传输矩阵法分析了材料介电常数的变化对于单缺陷结构的磁光多层膜隔离器性能的响,并提出了一种多缺陷结构的磁光多层膜结构.同单缺陷结构相比,多缺陷结构的旋转角的频谱响应带宽有很大增加,对于材料介电常数变化的宽容性得到了一个数量级的提高.同时这种多缺陷的结构对于膜层厚度的变化和入射角度也有很好的宽容性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document presents the modeling and characterization of novel optical devices based on periodic arrays of multiwalled carbon nanotubes. Vertically aligned carbon nanotubes can be grown in the arrangement of two-dimensional arrays of precisely determined dimensions. Having their dimensions comparable to the wavelength of light makes carbon nanotubes good candidates for utilization in nano-scale optical devices. We report that highly dense periodic arrays of multiwalled carbon nanotubes can be utilized as sub-wavelength structures for establishing advanced optical materials, such as metamaterials and photonic crystals. We demonstrate that when carbon nanotubes are grown close together at spacing of the order of few hundred nanometers, they display artificial optical properties towards the incident light, acting as metamaterials. By utilizing these properties we have established micro-scaled plasmonic high pass filter which operates in the optical domain. Highly dense arrays of multiwalled also offer a periodic dielectric constant to the incident light and display interesting photonic band gaps, which are frequency domains within which on wave propagation can take place. We have utilized these band gaps displayed by a periodic nanotube array, having 400 nm spacing, to construct photonic crystals based optical waveguides and switches. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is a review of research and development on semiconductor materials, which covers main scientific activities in this field. The present status acid future prospects of studies on semiconductor materials, such as silicon crystals, GaAs related III-V compound semiconductor materials and GaAs, InP and silicon based quantum well and superlattice materials, quantum wires and quantum dots materials, microcavity and photonic crystals, materials for quantum computation and wide band gap materials, are briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for producing optical structures using rotationally symmetric pyramids is proposed. Two-dimensional structures can be achieved using acute prisms. They form by multi-beam interference of plane waves that impinge from directions distributed symmetrically around the axis of rotational symmetry. Flat-topped pyramids provide an additional beam along the axis thus generating three-dimensional structures. Experimental results are consistent with the results of numerical simulations. The advantages of the method are simplicity of operation, low cost, ease of integration, good stability, and high transmittance. Possible applications are the fabrication of photonic micro-structures such as photonic crystals or array waveguides as well as multi-beam optical tweezers. (c) 2006 Optical Society of America.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A near-infrared luminescent macroporous material (PL-Macromaterial) and a near-infrared luminescent/magnetic bifunctional macroporous material (MML-Macromaterial) were synthesized by using polystyrene microspheres (PS) and Fe3O4 @polystyrene core-shell nanoparticles (Fe3O4@PS), respectively, as templates. Both the PL-Macromaterial and the M/PL-Macromaterial show the characteristic emission of the Er 3, ion. Moreover, the M/PL-Macromaterial possesses superparamagnetic properties at room temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-shaped Y2O3:Eu hollow microspheres have been successfully prepared on a large scale via a urea-based homogeneous precipitation technique in the presence of colloidal carbon spheres as hard templates followed by a subsequent heat treatment process. XRD results demonstrate that all the diffraction peaks of the samples can be well indexed to the pure cubic phase Of Y2O3. TEM and SEM images indicate that the shell of the uniform hollow spheres, whose diameters are about 250 nm, is composed of many uniform nanoparticles with diameters of about 20 nm, basically consistent with the estimation of XRD results. Furthermore, the main process in this method was carried out in aqueous condition, without the use of organic solvents or etching agents. The as-prepared hollow Y2O3:Eu microspheres show a strong red emission corresponding to the D-5(0)-F-7(2) transition of the Eu3+ ions under ultraviolet or low voltage excitation, which might find potential applications in fields such as light phosphor powders, advanced flat panel displays, field emission display devices, and biological labeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A sol-gel technique was used to prepare Gd2Ti2O7:Eu3+-coated submicron silica spheres (SiO2@Gd2Ti2O7:Eu3+). The resulted SiO2@Gd2Ti2O7:Eu3+ core-shell particles were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), energy-dispersive x-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, as well as kinetic decays. The XRD results demonstrate that the Gd2Ti2O7:Eu3+ layers begin to crystallize on the SiO2 spheres after annealing at 800 degrees C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size similar to 620 nm), non-agglomeration, and smooth surface. The thickness of the Gd2Ti2O7:Eu3+ shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (60 nm for four deposition cycles). Under the irradiation of 310 nm ultraviolet, the SiO2@GdTi2O7:Eu3+ samples show strong emission of Eu3+.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A uniform nanolayer of europium-doped Gd2O3 was coated on the surface of preformed submicron silica spheres by a Pechini sol-gel process. The resulted SiO2@Gd2O3:Eu3+ core-shell structured phosphors were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL) spectra as well as kinetic decays. The XRD results show that the Gd2O3:Eu3+ layers start to crystallize on the SiO2 spheres after annealing at 400 degrees C and the crystallinity increases with raising the annealing temperature. The core-shell phosphors possess perfect spherical shape with narrow size distribution (average size: 640 nm) and non-agglomeration. The thickness of the Gd2O3:Eu3+ shells on the SiO2 cores can be adjusted by changing the deposition cycles (70 nm for three deposition cycles). Under short UV excitation, the obtained SiO2@Gd2O3:Eu3+ particles show a strong red emission with D-5(0)-F-7(2) (610 nm) of Eu3+ as the most prominent group.The PL intensity of Eu3+ increases with increasing the annealing temperature and the number of coating cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents several routes towards achieving artificial opal templates by colloidal self-assembly of polystyrene (PS) or poly(methyl methacrylate) (PMMA) spheres and the use of these template for the fabrication of V2O5 inverse opals as cathode materials for lithium ion battery applications. First, through the manipulation of different experimental factors, several methods of affecting or directing opal growth towards realizing different structures, improving order and/or achieving faster formation on a variety of substrates are presented. The addition of the surfactant sodium dodecyl sulphate (SDS) at a concentration above the critical micelle concentration for SDS to a 5 wt% solution of PMMA spheres before dip-coating is presented as a method of achieving ordered 2D PhC monolayers on hydrophobic Au-coated silicon substrates at fast and slow rates of withdrawal. The effect that the degree of hydrophilicity of glass substrates has on the ordering of PMMA spheres is next investigated for a slow rate of withdrawal under noise agitation. Heating of the colloidal solution is also presented as a means of affecting order and thickness of opal deposits formed using fast rate dip coating. E-beam patterned substrates are shown as a means of altering the thermodynamically favoured FCC ordering of polystyrene spheres (PS) when dip coated at slow rate. Facile routes toward the synthesis of ordered V2O5 inverse opals are presented with direct infiltration of polymer sphere templates using liquid precursor. The use of different opal templates, both 2D and 3D partially ordered templates, is compared and the composition and arrangement of the subsequent IO structures post infiltration and calcination for various procedures is characterised. V2O5 IOs are also synthesised by electrodeposition from an aqueous VOSO4 solution at constant voltage. Electrochemical characterisation of these structures as cathode material for Li-ion batteries is assessed in a half cell arrangement for samples deposited on stainless steel foil substrates. Improved rate capabilities are demonstrated for these materials over bulk V2O5, with the improvement attributed to the shorter Li ion diffusion distances and increased electrolyte infiltration provided by the IO structure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three-dimensional vanadium pentoxide (V2O5) material architectures in the form of inverse opals (IOs) were fabricated using a simple electrodeposition process into artificial opal templates on stainless steel foil using an aqueous solution of VOSO4.χH2O with added ethanol. The direct deposition of V2O5 IOs was compared with V2O5 planar electrodeposition and confirms a similar progressive nucleation and growth mechanism. An in-depth examination of the chemical and morphological nature of the IO material was performed using X-ray crystallography, X-ray photoelectron spectroscopy, Raman scattering and scanning/transmission electron microscopy. Electrodeposition is demonstrated to be a function of the interstitial void fraction of the artificial opal and ionic diffusivity that leads to high quality, phase pure V2O5 inverse opals is not adversely affected by diffusion pathway tortuosity. Methods to alleviate electrodeposited overlayer formation on the artificial opal templates for the fabrication of the porous 3D structures are also demonstrated. Such a 3D material is ideally suited as a cathode for lithium ion batteries, electrochromic devices, sensors and for applications requiring high surface area electrochemically active metal oxides.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The periodicity of 180 degrees. stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients ( exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals.