343 resultados para PHOSPHOR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In der vorliegenden Dissertation wurde die Substanzklasse der 1,1´-Diphosphaferrocene sowohl auf ihre molekulare Koordinationschemie mit [AuCl(tht)] (tht = Tetrahydrothiophen) als auch auf ihre Adsorptionsfähigkeit auf planaren Goldoberflächen untersucht.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Color displays used in image processing systems consist of a refresh memory buffer storing digital image data which are converted into analog signals to display an image by driving the primary color channels (red, green, and blue) of a color television monitor. The color cathode ray tube (CRT) of the monitor is unable to reproduce colors exactly due to phosphor limitations, exponential luminance response of the tube to the applied signal, and limitations imposed by the digital-to-analog conversion. In this paper we describe some computer simulation studies (using the U*V*W* color space) carried out to measure these reproduction errors. Further, a procedure to correct for color reproduction error due to the exponential luminance response (gamma) of the picture tube is proposed, using a video-lookup-table and a higher resolution digital-to-analog converter. It is found, on the basis of computer simulation studies, that the proposed gamma correction scheme is effective and robust with respect to variations in the assumed value of the gamma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phase diagrams for the systems Ln2O3---H2O (Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) studied at 5000 to 10,000 psi and temperature range of 200–900°C, show that Ln(OH)3 hexagonal and LnOOH monoclinic are the only stable phases from Nd to Ho. The cubic oxide phase (C---Ln2O3) is stable for systems of Er, Tm, Yb and Lu, with no evidence of its equilibrium in the systems of lighter lanthanides. Using strong acids, HNO3 and HCOOH, as mineralisers the cubic oxides could be stabilised from Eu down to Lu. Solid solution phases of CeO2---Y2O3 and Eu2O3---Y2O3 have also been synthesised with HNO3 as mineraliser, since these compounds have promising use as solid electrolyte and phosphor materials respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Friction characteristics of journal bearings made from cast graphic aluminum particulate composite alloy were determined under mixed lubrication and compared with those of the base alloy (without graphite) and leaded phosphor bronze. All three materials ran without seizure while the performance of the particulate composite and leaded phosphor bronze improved with running. Temperature rise in the journal bearing under mixed/boundary lubrication was also measured. It was found that with 0.3D/1000 to 1.5D/1000 clearance and a low lubrication rate (typical value for a bearing of diameter 35 mm × length 35 mm is 80 mm3/min) and at a PV value of 73 × 106 Nm m−2 min−1 graphitic aluminium alloy journal bearings operate satisfactorily without seizure and excessive temperature rise. In comparison, the bronze bearings, with all the other parameters remaining the same, could not run without excessive temperature rise at clearances below D/1000 at lubrication rates lower than 200 mm3/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bixbyite type Y2O3:Eu3+ apart from being the efficient red phosphor extensively used in trichromatic fluorescent lamps, it is a typical system one can apply Jorgensen's refined electron spin pairing theory. This can be used to explain the enhancement in Eu3+ emission intensity observed with the aliovalent substitution in the yttria host matrix. Results based on these are explained qualitatively by considering a simple configurational coordinate model. Futhermore, an insight into the different types of defects induced with the aliovalent substitution in the yttria lattice has become possible with EPR probe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Different phases of Eu3+ activated gadolinium oxide (Gd (OH)(3), GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (GAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)(3):Eu after calcinations at 350 and 600 degrees C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)(3), lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between D-5(0) and F-7 configurations. Thermoluminescence glow curves of Gd (OH)(3): Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source ((CO)-C-60) in the dose range 10-60 Gy at a heating rate of 6.7 degrees C sec(-1). Well resolved glow peaks in the range 42-45, 67-76,95-103 and 102-125 degrees C were observed. When gamma-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in gamma-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 degrees C and a new shouldered peak at 86 degrees C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Red, blue and green emitting lamp phosphors such as EU(3+) doped Y2O3 (red phosphor), EU(2+) doped Ba0.64Al12O18.64, BaMgAl10O17 and BaMg2Al16O27 (blue phosphors) and Ce0.67Tb0.33MgAl11O19 and Eu2+, Mn2+ doped BaMgAl10O17 (green phosphors) have been prepared by the combustion of the corresponding metal nitrates (oxidizer) and oxalyl dihydrazide/urea/carbohydrazide (fuel) mixtures at 400 degrees-500 degrees C within 5 min. The formation of these phosphors has been confirmed by their characteristic powder X-ray diffraction patterns and fluorescence spectra. The phosphors showed characteristic emission bands at 611 nm (red emission), 430-450 nm (blue emission) and 515-540 nm (green emission). The fine-particle nature of the combustion derived phosphors has been investigated using powder density, particle size and BET surface area measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of B2O3 addition on the long phosphorescence of SrAl2O4:Eu2+, Dy3+ has been investigated. B2O3 is just not an inert high temperature solvent (flux) to accelerate grain growth, according to SEM results. B2O3 has a substitutional effect, even at low concentrations. by way of incorporation of BO4 in the corner-shared AlO4 framework of the distorted 'stuffed' tridymite structure of SrAl2O4. which is discernible from the IR and solid-state MAS NMR spectral data. With increasing concentrations, B2O3 reacts with SrAl2O4 to form Sr4Al4O25 together with Sr-borate (SrB2O4) as the glassy phase, as evidenced by XRD and SEM studies. At high B2O3 contents, Sr4Al14O25 converts to SrAl2B2O7 (cubic and hexagonal), SrAl12O19 and Sr-borate (SrB4O7) glass. Sr4Al14O25:Eu2+, Dy3+ has also been independently synthesized to realize the blue emitting (lambda(em)approximate to490 nm) phosphor. The afterglow decay as well as thermoluminescence studies reveal that Sr4Al14O25:Eu, Dy exhibits equally long phosphorescence as that of SrAl2O4:Eu2+, Dy3+. In both cases, long phosphorescence is noticed only when BO4 is present along with Dy3+ and Eu2+. Here Dy3+ because of its higher charge density than Eu2+ prefers to occupy the Sr sites in the neighbourhood of BO4, as the effective charge on borate is more negative than that of AlO4. Thus. Dy3+ forms a substitutional defect complex with borate and acts as an acceptor-type defect center. These defects Eu2+ ions and the subsequent thermal release of hole at room temperature followed by the trap the hole generated by the excitation of recombination with electron resulting in the long persistent phosphorescence. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SrTiO3:Pr3+,Al3+ phosphor samples with varying ratios of Sr/Ti/Al were prepared by the gel-carbonate method and the mechanism of enhancement of the red photoluminescence intensity therein was investigated. The photoluminescence (PL) spectra of SrTiO3:Pr3+ show both D-1(2) --> H-3(4) and P-3(0) --> H-3(4) emission in the red and blue spectral regions, respectively, with comparable intensity. The emission intensity of D-1(2) --> H-3(4) is drastically enhanced by the incorporation of Al3+ and excess Ti4+ in the compositional range Sr(Ti,Al-y)(O3+3y/2):Pr3+ (0.2 less than or equal to y less than or equal to 0.4) and SrTi1+xAlyO3+z:Pr3+ (0.2 less than or equal to x less than or equal to 0.5; 0.05 less than or equal to y less than or equal to 0.1; z = 2x + 3y/2) with the complete disappearance of the blue band. This cannot be explained by the simple point defect model as the EPR studies do not show any evidence for the presence of electron or hole centers. TEM investigations show the presence of exsolved nanophases of SrAl12O19 and/or TiO2 in the grain boundary region as well as grain interiors as lamellae which, in turn, form the solid-state defects, namely, dislocation networks, stacking faults and crystallographic shear planes whereby the framework of corner shared TiO6 octehedra changes over to edge-sharing TiO5-AlO5 strands as indicated from the Al-27 MAS NMR studies. The presence of transitional nanophases and the associated defects modify the excitation-emission processes by way of formation of electronic sub-levels at 3.40 and 4.43 eV, leading to magnetic-dipole related red emission with enhanced intensity. This is evidenced by the fact that SrAl12O19:Pr3+,Ti4+ shows bright red emission whereas SrAl12O19:Pr3+ does not show red photoluminescence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel wet-chemical precipitation method is optimized for the synthesis of ZnS nanocrystals doped with Cu+ and halogen. The nanoparticles were stabilized by capping with polyvinyl pyrrolidone (PVP). XRD studies show the phase singularity of ZnS particles having zinc-blende (cubic) structure. TEM as well as XRD line broadening indicate that the average crystallite size of undoped samples is similar to2 nm. The effects of change in stoichiometry and doping with Cu+ and halogen on the photoluminescence properties of ZnS nanophosphors have been investigated. Sulfur vacancy (Vs) related emission with peak maximum at 434 nm has been dominant in undoped ZnS nanoparticles. Unlike in the case of microcrystalline ZnS phosphor, incorporation of halogens in nanoparticles did not result V-Zn related self-activated emission. However, emission characteristics of nanophosphors have been changed with Cu+ activation due to energy transfer from vacancy centers to dopant centers. The use of halogen as co-activator helps to increase the solubility of Cu+ ions in ZnS lattice and also enhances the donor-acceptor type emission efficiency. With increase in Cu+ doping, Cu-Blue centers (CuZn-Cui+), which were dominant at low Cu+ concentrations, has been transformed into Cu-Green (Cu-Zn(-)) centers and the later is found to be situated near the surface regions of nanoparticles. From these studies we have shown that, by controlling the defect chemistry and suitable doping, photoluminescence emission tunability over a wide wavelength range, i.e., from 434 to 514 nm, can be achieved in ZnS nanophosphors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electroluminescent zinc sulfide doped with copper and chloride (ZnS:Cu, Cl) powder was heated to 400°C and rapidly quenched to room temperature. Comparison between the quenched and non-quenched phosphors using synchrotron radiation X-ray powder diffraction (XRPD) (λ = 0.828692 Å) and X-ray absorption spectroscopy (XAS) was made. XRPD shows that the expected highly faulted structure is observed with excellent resolution out to 150° 2θ (or to (12 2 2) of the sphalerite phase). The quenched sample compared to the unheated sample shows a large change in peak ratios between 46.7° and 46.9°, which is thought to correspond to the wurtzite (0 0 6), (0 3 2) and sphalerite (3 3 3)/(5 1 1) peaks. Hence, a large proportion of this sphalerite diffraction is lost from the material upon rapid quenching, but not when the material is allowed to cool slowly. The Zn K-edge XAS data indicate that the crystalline structures are indistinguishable using this technique, but do give an indication that the electronic structure has altered due to changing intensity of the white line. It is noted that the blue electroluminescence (EL) emission bands are lost upon quenching: however, a large amount of total EL emission intensity is also removed, which is consistent with our findings. We report the XRPD of a working alternating-current electroluminescence device in the synchrotron X-ray beam, which exhibits a new diffraction pattern when the device is powered in an AC field even though the phosphor is fixed in the binder. Significantly, only a few crystals are required to yield the diffraction data because of the high flux X-ray source. These in panel data show multiple sharp diffraction lines spread out under the region, where capillary data show broad diffraction intensity indicating that the phosphor powder is comprised of unique crystals, each having different structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gd1.95Eu0.4M0.01O3 (M = Li+ Na+ K+) nanophosphors have been synthesized by a low temperature solution combustion (LSC) method. Powder X-ray diffraction pattern (PXRD), scanning electron microscopy (SEM), UV-vis and photoluminescence (PL) measurements were carried out to characterize their structural and luminescent properties. The excitation and emission spectra indicated that the phosphor could be well excited by UV light (243 nm) and emit red light about 612 nm. The effect of alkali co-dopant on PL properties has been examined. The results showed that incorporation of Li+, Na+ and K+ in to Gd2O3:Eu3+ phosphor would lead to a remarkable increase of photoluminescence. The PL intensity of Gd2O3:Eu3+ phosphor was improved evidently by co-doping with Li+ ions whose radius is less than that of Gd3+ and hardly with Na+, K+ whose radius is larger than that of Gd3+. The effect of co-dopants on enhanced luminescence was mainly regarded as the result of a suitable local distortion of crystal field surrounding the Eu3+ activator. These results will play an important role in seeking some more effective co-dopants. (C) 2011 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By employing a thermal oxidation strategy, we have grown large area porous Cu2O from Cu foil. CuO nanorods are grown by heating Cu which were in turn heated in an argon atmosphere to obtain a porous Cu2O layer. The porous Cu2O layer is superhydrophobic and exhibits red luminescence. In contrast, Cu2O obtained by direct heating, is hydrophobic and exhibits yellow luminescence. Two more luminescence bands are observed in addition to red and yellow luminescence, corresponding to the recombination of free and bound excitons. Over all, the porous Cu2O obtained from Cu via CuO nanorods, can serve as a superhydrophobic luminescence/phosphor material.