981 resultados para PHASE CALIBRATION SOURCES
Resumo:
This article investigates the temporal and spatial controls on sediment-phosphorus (P) dynamics in two contrasting sub-catchments of the River Kennet, England. Suspended sediment (collected under representative flow conditions) and size-fractionated bedload (collected weekly for one year) from the Rivers Lambourn and Enborne was analysed for a range of physico-chemical determinands. Total P concentrations were highest in the most mobile fractions of sediment: suspended sediment, fine silt and clay and organic matter (mean concentrations of 1758, 1548 and 1440 mug P g(-1) dry sediment, respectively). Correlation analysis showed significant relationships between total P and total iron (n = 110), total manganese (n = 110), organic matter (n = 110) and specific surface area (n = 28) in the Lambourn (r(2) 0.71, 0.68, 0.62 and 0.52, respectively) and between total P and total iron (n = 110), total manganese (n = 110) and organic matter (n = 110) in the Enborne (r(2) 0.74, 0.85 and 0.68, respectively). These data highlight the importance of metal oxyhydroxide adsorption of P on fine particulates and organic matter. However, high total P concentrations in the granule gravel and coarse sand size fraction during the summer period (mean concentration 228 mug P g(-1) dry sediment) also highlight the role of calcite co-precipitation on P dynamics in the Lambourn. P to cation ratios in Lambourn sediment indicated that fine silt and clay and granule gravel and coarse sand size fractions were potential sources of P release to the water column during specific periods of the summer and autumn. In the Enborne, however, only the granule gravel and coarse sand size fraction had high ratios and a slow, constant release of P was observed. In addition, scanning electron microscopy work confirmed the association of P with calcite in the Lambourn and P with iron on clay particles in the Enborne. The study highlighted the importance of the chemical and physical properties of the sediment in influencing the mechanisms controlling P storage and release within river channels. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
New radiocarbon calibration curves, IntCal04 and Marine04, have been constructed and internationally ratified to replace the terrestrial and marine components of IntCal98. The new calibration data sets extend an additional 2000 yr, from 0-26 cal kyr BP (Before Present, 0 cal. BP = AD 1950), and provide much higher resolution, greater precision, and more detailed structure than IntCal98. For the Marine04 curve, dendrochronologically-dated tree-ring samples, converted with a box diffusion model to marine mixed-layer ages, cover the period from 0-10.5 call kyr BR Beyond 10.5 cal kyr BP, high-resolution marine data become available from foraminifera in varved sediments and U/Th-dated corals. The marine records are corrected with site-specific C-14 reservoir age information to provide a single global marine mixed-layer calibration from 10.5-26.0 cal kyr BR A substantial enhancement relative to IntCal98 is the introduction of a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine04) are discussed here. The tree-ring data sets, sources of uncertainty, and regional offsets are presented in detail in a companion paper by Reimer et al. (this issue).
Resumo:
A new calibration curve for the conversion of radiocarbon ages to calibrated (cal) ages has been constructed and internationally ratified to replace ImCal98, which extended from 0-24 cal kyr BP (Before Present, 0 cal BP = AD 1950). The new calibration data set for terrestrial samples extends from 0-26 cal kyr BP, but with much higher resolution beyond 11.4 cal kyr BP than ImCal98. Dendrochronologically-dated tree-ring samples cover the period from 0-12.4 cal kyr BP. Beyond the end of the tree rings, data from marine records (corals and foraminifera) are converted to the atmospheric equivalent with a site-specific marine reservoir correction to provide terrestrial calibration from 12.4-26.0 cal kyr BP. A substantial enhancement relative to ImCal98 is the introduction of a coherent statistical approach based on a random walk model, which takes into account the uncertainty in both the calendar age and the C-14 age to calculate the underlying calibration curve (Buck and Blackwell, this issue). The tree-ring data sets, sources of uncertainty, and regional offsets are discussed here. The marine data sets and calibration curve for marine samples from the surface mixed layer (Marine 04) are discussed in brief, but details are presented in Hughen et al. (this issue a). We do not make a recommendation for calibration beyond 26 cal kyr BP at this time; however, potential calibration data sets are compared in another paper (van der Plicht et al., this issue).
Resumo:
It is known that Escherichia coli K-12 is cryptic (Phn(-)) for utilization of methyl phosphonate (MePn) and that Phn(+) variants can be selected for growth on MePn as the sole P source. Variants arise from deletion via a possible slip strand mechanism of one of three direct 8-bp repeat sequences in phnE, which restores function to a component of a putative ABC type transporter. Here we show that Phn(+) variants are present at the surprisingly high frequency of >10(-2) in K-12 strains. Amplified-fragment length polymorphism analysis was used to monitor instability in phnE in various strains growing under different conditions. This revealed that, once selection for growth on MePn is removed, Phn(+) revertants reappear and accumulate at high levels through reinsertion of the 8-bp repeat element sequence. It appears that, in K-12, phnE contains a high-frequency reversible gene switch, producing phase variation which either allows ("on" form) or blocks ("off" form) MePn utilization. The switch can also block usage of other metabolizable alkyl phosphonates, including the naturally occurring 2-aminoethylphosphonate. All K-12 strains, obtained from collections, appear in the "off" form even when bearing mutations in mutS, mutD, or dnaQ which are known to enhance slip strand events between repetitive sequences. The ability to inactivate the phnE gene appears to be unique to K-12 strains since the B strain is naturally Phn(+) and lacks the inactivating 8-bp insertion in phnE, as do important pathogenic strains for which genome sequences are known and also strains isolated recently from environmental sources.
Resumo:
The gas-phase reactions of ozone with unsaturated hydrocarbons are significant sources of free radical species (including (OH)-O-center dot) and particulate material in the Earth's atmosphere. In this tutorial review, the kinetics, products and mechanisms of these reactions are examined, starting with a discussion of the original mechanism proposed by Criegee and following with a summary presentation of the complex, free radical-mediated reactions of carbonyl oxide (Criegee) intermediates. The contribution of ozone-terpene reactions to the atmospheric burden of secondary organic aerosol material is also discussed from the viewpoint of the formation of non-volatile organic acid products from the complex chemistry of ozone with alpha-pinene. Throughout the article, currently accepted understanding is supported through the presentation of key experimental results, and areas of persistent or new uncertainty are highlighted.
Resumo:
The high thermal storage capacity of phase change material (PCM) can reduce energy consumption in buildings through energy storage and release when combined with renewable energy sources, night cooling, etc. PCM boards can be used to absorb heat gains during daytime and release heat at night. In this paper, the thermal performance of an environmental chamber fitted with phase change material boards has been investigated. During a full-cycle experiment, i.e. charging–releasing cycle, the PCM boards on a wall can reduce the interior wall surface temperature during the charging process, whereas the PCM wall surface temperature is higher than that of the other walls during the heat releasing process. It is found that the heat flux density of the PCM wall in the melting zone is almost twice as large as that of ordinary wall. Also, the heat-insulation performance of a PCM wall is better than that of an ordinary wall during the charging process, while during the heat discharging process, the PCM wall releases more heat energy. The convective heat transfer coefficient of PCM wall surface calculated using equations for a normal wall material produces an underestimation of this coefficient. The high convective heat transfer coefficient for a PCM wall is due to the increased energy exchange between the wall and indoor air.
Resumo:
It took the solar polar passage of Ulysses in the early 1990s to establish the global structure of the solar wind speed during solar minimum. However, it remains unclear if the solar wind is composed of two distinct populations of solar wind from different sources (e.g., closed loops which open up to produce the slow solar wind) or if the fast and slow solar wind rely on the superradial expansion of the magnetic field to account for the observed solar wind speed variation. We investigate the solar wind in the inner corona using the Wang-Sheeley-Arge (WSA) coronal model incorporating a new empirical magnetic topology–velocity relationship calibrated for use at 0.1 AU. In this study the empirical solar wind speed relationship was determined by using Helios perihelion observations, along with results from Riley et al. (2003) and Schwadron et al. (2005) as constraints. The new relationship was tested by using it to drive the ENLIL 3-D MHD solar wind model and obtain solar wind parameters at Earth (1.0 AU) and Ulysses (1.4 AU). The improvements in speed, its variability, and the occurrence of high-speed enhancements provide confidence that the new velocity relationship better determines the solar wind speed in the outer corona (0.1 AU). An analysis of this improved velocity field within the WSA model suggests the existence of two distinct mechanisms of the solar wind generation, one for fast and one for slow solar wind, implying that a combination of present theories may be necessary to explain solar wind observations.
Resumo:
Monoclonal antibodies specific for phase 1 ("i" antigen), phase 2 ("1,2" antigen) and common epitopes of the flagellins of Salmonella enterica serotype Typhimurium were raised. Having confirmed their specificity, the monoclonal antibodies were used to develop semi-quantitative ELISAs in order to assess the relative expression of the two phases by strains of Typhimurium. The majority of Typhimurium strains representative of a wide cross-section of definitive types from animal and environmental sources preferentially expressed phase 1 antigen in vitro. DT40 strains were unique in expressing phase 2 preferentially. The ratio of phase 1 to phase 2 expressed by strains tended to be constant for any one strain when strains were grown on a number of conventional laboratory media. However, the ratio of phases was shown to be modulated by incubation at 42 degreesC and buffering media at pH values, notably 4.5, other than neutral. Selenite broth and Rambach media repressed flagellation. Crown Copyright (C) 2001 Published by Elsevier Science B.V. All rights reserved.
Resumo:
This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.
Resumo:
The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.
Resumo:
Cistus is a plant genus traditionally used in folk medicine as remedy for several microbial disorders and infections. The abundance of Cistus spp. in the Iberian Peninsula together with their ability to renew after wildfire contribute to their profitability as suppliers of functional ingredients. The aim of this study was to provide a comprehensive characterization of the volatile profile of different Cistus plants grown in Spain:Cistus ladanifer L., Cistus albidus L., Cistus salviifolius L., and Cistus clusii Dunal (the latter has not been studied before). A system combining headspace solid-phase microextraction and gas chromatography coupled to mass spectrometry (HS-SPME-GC–MS) was implemented; thereby, the volatile compounds were extracted and analyzed in a fast, reliable and environment-friendly way. A total of 111 volatile compounds were identified, 28 of which were reported in Cistus for the first time. The most abundant components of the samples (mono and sesquiterpenes) have been previously reported as potent antimicrobial agents. Therefore, this work reveals the potential use of the Cistus spp. studied as natural sources of antimicrobial compounds for industrial production of cosmeceuticals, among other applications.
Resumo:
Heavy precipitation affected Central Europe in May/June 2013, triggering damaging floods both on the Danube and the Elbe rivers. Based on a modelling approach with COSMO-CLM, moisture fluxes, backward trajectories, cyclone tracks and precipitation fields are evaluated for the relevant time period 30 May–2 June 2013. We identify potential moisture sources and quantify their contribution to the flood event focusing on the Danube basin through sensitivity experiments: Control simulations are performed with undisturbed ERA-Interim boundary conditions, while multiple sensitivity experiments are driven with modified evaporation characteristics over selected marine and land areas. Two relevant cyclones are identified both in reanalysis and in our simulations, which moved counter-clockwise in a retrograde path from Southeastern Europe over Eastern Europe towards the northern slopes of the Alps. The control simulations represent the synoptic evolution of the event reasonably well. The evolution of the precipitation event in the control simulations shows some differences in terms of its spatial and temporal characteristics compared to observations. The main precipitation event can be separated into two phases concerning the moisture sources. Our modelling results provide evidence that the two main sources contributing to the event were the continental evapotranspiration (moisture recycling; both phases) and the North Atlantic Ocean (first phase only). The Mediterranean Sea played only a minor role as a moisture source. This study confirms the importance of continental moisture recycling for heavy precipitation events over Central Europe during the summer half year.
Resumo:
Nitrate is one of the most important stimuli in nitrate reductase (NR) induction, while ammonium is usually an inhibitor. We evaluated the influence of nitrate, ammonium or urea as nitrogen sources on NR activity of the agarophyte Gracilaria chilensis. The addition of nitrate rapidly (2 min) induced NR activity, suggesting a fast post-translational regulation. In contrast, nitrate addition to starved algae stimulated rapid nitrate uptake without a concomitant induction of NR activity. These results show that in the absence of nitrate, NR activity is negatively affected, while the nitrate uptake system is active and ready to operate as soon as nitrate is available in the external medium, indicating that nitrate uptake and assimilation are differentially regulated. The addition of ammonium or urea as nitrogen sources stimulated NR activity after 24 h, different from that observed for other algae. However, a decrease in NR activity was observed after the third day under ammonium or urea. During the dark phase, G. chilensis NR activity was low when compared to the light phase. A light pulse of 15 min during the dark phase induced NR activity 1.5-fold suggesting also fast post-translational regulation. Nitrate reductase regulation by phosphorylation and dephosphorylation, and by protein synthesis and degradation, were evaluated using inhibitors. The results obtained for G. chilensis show a post-translational regulation as a rapid response mechanism by phosphorylation and dephosphorylation, and a slower mechanism by regulation of RNA synthesis coupled to de novo NR protein synthesis.
Resumo:
We present the first results of a study investigating the processes that control concentrations and sources of Pb and particulate matter in the atmosphere of Sao Paulo City Brazil Aerosols were collected with high temporal resolution (3 hours) during a four-day period in July 2005 The highest Pb concentrations measured coincided with large fireworks during celebration events and associated to high traffic occurrence Our high-resolution data highlights the impact that a singular transient event can have on air quality even in a megacity Under meteorological conditions non-conducive to pollutant dispersion Pb and particulate matter concentrations accumulated during the night leading to the highest concentrations in aerosols collected early in the morning of the following day The stable isotopes of Pb suggest that emissions from traffic remain an Important source of Pb in Sao Paulo City due to the large traffic fleet despite low Pb concentrations in fuels (C) 2010 Elsevier BV All rights reserved
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved