950 resultados para PEM FUEL-CELL
Resumo:
Calculated answer: First-principles calculations have been applied to calculate the energy barrier for the key step in CO formation on a Pt surface (see picture; Pt blue, Pt atoms on step edge yellow) to understand the low CO2 selectivity in the direct ethanol fuel cell. The presence of surface oxidant species such as O (brown bar) and OH (red bar) led to an increase of the energy barrier and thus an inhibition of the key step. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
This study employs density functional theory (DFT) calculations to examine the mechanism by which acetaldehyde is formed on platinum in a typical direct ethanol fuel cell (DEFC). A pathway is found involving the formation of a strongly hydrogen-bonded complex between adsorbed ethanol and the surface hydroxyl (OH) species, followed by the facile alpha-dehydrogenation of ethanol, with spontaneous weakening of the hydrogen bond in favor of adsorbed acetaldehyde and water. This mechanism is found to be comparably viable on both the close-packed surface and the monatomic steps. Comparison of further reactions on these two sites strongly indicates that the steps act as net removers of acetaldehyde from the product stream, while the flat surface acts as a net producer.
Resumo:
A quantitative research on S and SO2 poisoning Pt/Vulcan carbon (Pt/VC) catalysts for fuel cells was conducted by the three-electrode method. Pt/VC electrodes were contaminated by submersion in a SO2- containing solution made up of 0.2 mM Na2SO3 and 0.5 M H2SO4 for different periods of time, and held at 0.05 V (vs. RHE) in 0.5 M H2SO4 solutions in order to gain zero-valence sulfur (S0) poisoned electrodes. The sulfur coverage of Pt was determined from the total charge consumed as the sulfur was oxidized from S0 at 0.05 V (vs. RHE) to sulfate at >1.1 V (vs. RHE). The summation of initial coverage of S0 (S) and coverage of H (H) are approximately equal to 1 (H + S = 1) when 0.5