982 resultados para P53 protein


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Translation of thymidylate synthase (TS) mRNA is controlled by its own protein end-product TS in a negative autoregulatory manner. Disruption of this regulation results in increased synthesis of TS and may lead to the development of cellular drug resistance to TS-directed anticancer agents. As a strategy to inhibit TS expression, antisense 2′-O-methyl RNA oligoribonucleotides (ORNs) were designed to directly target the 5′ upstream cis-acting regulatory element (nucleotides 80–109) of TS mRNA. A 30 nt ORN, HYB0432, inhibited TS expression in human colon cancer RKO cells in a dose-dependent manner but had no effect on the expression of β-actin, α-tubulin or topoisomerase I. TS expression was unaffected by treatment with control sense or mismatched ORNs. HYB0504, an 18 nt ORN targeting the same core sequence, also repressed expression of TS protein. However, further reduction in oligo size resulted in loss of antisense activity. Following HYB0432 treatment, TS protein levels were reduced by 60% within 6 h and were maximally reduced by 24 h. Expression of p53 protein was inversely related to that of TS, suggesting that p53 expression may be directly linked to intracellular levels of TS. Northern blot analysis demonstrated that TS mRNA was unaffected by HYB0432 treatment. The half-life of TS protein was unchanged after antisense treatment suggesting that the mechanism of action of antisense ORNs is mediated through a process of translational arrest. These findings demonstrate that an antisense ORN targeted at a critical cis-acting element on TS mRNA can specifically inhibit expression of TS protein in RKO cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death (apoptosis) is a normal physiological process, which could in principle be manipulated to play an important role in cancer therapy. The key importance of p53 expression in the apoptotic response to DNA-damaging agents has been stressed because mutant or deleted p53 is so common in most kinds of cancer. An important strategy, therefore, is to find ways to induce apoptosis in the absence of wild-type p53. In this paper, we compare apoptosis in normal human mammary epithelial cells, in cells immortalized with human papilloma virus (HPV), and in mammary carcinoma cell lines expressing wild-type p53, mutant p53, or no p53 protein. Apoptosis was induced with mitomycin C (MMC), a DNA cross-linking and damaging agent, or with staurosporine (SSP), a protein kinase inhibitor. The normal and HPV-transfected cells responded more strongly to SSP than did the tumor cells. After exposure to MMC, cells expressing wild-type p53 underwent extensive apoptosis, whereas cells carrying mutated p53 responded weakly. Primary breast cancer cell lines null for p53 protein were resistant to MMC. In contrast, two HPV immortalized cell lines in which p53 protein was destroyed by E6-modulated ubiquitinylation were highly sensitive to apoptosis induced by MMC. Neither p53 mRNA nor protein was induced in the HPV immortalized cells after MMC treatment, although p53 protein was elevated by MMC in cells with wild-type p53. Importantly, MMC induced p21 mRNA but not p21 protein expression in the HPV immortalized cells. Thus, HPV 16E6 can sensitize mammary epithelial cells to MMC-induced apoptosis via a p53- and p21-independent pathway. We propose that the HPV 16E6 protein modulates ubiquitin-mediated degradation not only of p53 but also of p21 and perhaps other proteins involved in apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Of all human cancers, HNSCC is the most distressing affecting pain, disfigurement, speech and the basic survival functions of breathing and swallowing. Mortality rates have not significantly changed in the last 40 years despite advances in radiotherapy and surgical treatment. Molecular markers are currently being identified that can determine prognosis preoperatively by routine tumour biopsy Leading to improved management of HNSCC patients. The approach could help decide which early stage patient should have adjuvant neck dissection and radiotherapy, and whether Later stage patients with operable lesions would benefit from resection and reconstructive surgery or adopt a conservative approach to patients with poor prognosis regardless of treatment. In the future, understanding these basic genetic changes in HNSCC would be important for the management of HNSCC. (C) 2004 The British Association of Plastic Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Targeted inhibition of oncogenes in tumor cells is a rational approach toward the development of cancer therapies based on RNA interference (RNAi). Tumors caused by human papillomavirus (HPV) infection are an ideal model system for RNAi-based cancer therapies because the oncogenes that cause cervical cancer, E6 and E7, are expressed only in cancerous cells. We investigated whether targeting HPV E6 and E7 oncogenes yields cancer cells more sensitive to chemotherapy by cisplatin, the chemotherapeutic agent currently used for the treatment of advanced cervical cancer. We have designed siRNAs directed against the HPV E6 oncogene that simultaneously targets both E6 and E7, which results in an 80% reduction in E7 protein and reactivation of the p53 pathway. The loss of E6 and E7 resulted in a reduction in cellular viability concurrent with the induction of cellular senescence. Interference was specific in that no effect on HPV-negative cells was observed. We demonstrate that RNAi against E6 and E7 oncogenes enhances the chemotherapeutic effect of cisplatin in HeLa cells. The IC50 for HeLa cells treated with cisplatin was 9.4 mu M, but after the addition of a lentivirus-delivered shRNA against E6, the IC50 was reduced almost 4-fold to 2.4 mu M. We also observed a decrease in E7 expression with a concurrent increase in p53 protein levels upon cotreatment with shRNA and cisplatin over that seen with individual treatment alone. Our results provide strong evidence that loss of E6 and E7 results in increased sensitivity to cisplatin, probably because of increased p53 levels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To compare cell phenotypes displayed by cholangiocarcinomas and adjacent bile duct lesions in patients from an area endemic in liver-fluke infestation and those with sporadic cholangiocarcinoma. Methods: 65 fluke-associated and 47 sporadic cholangiocarcinomas and 6 normal livers were studied. Serial paraffin-wax sections were stained immunohistochemically with monoclonal antibodies characterising a Brunner or pyloric gland metaplasia cell phenotype (antigens D10 and 1F6), intestinal goblet cells (antigen 17NM), gastric foveolar apomucin (MUC5AC), a gastrointestinal epithelium cytokeratin (CK20) and the p53 protein. Results: 60% of the 112 cholangiocarcinomas expressed antigen D10, 68% MUC5AC, 33% antigen 17NM and 20% CK20; 37% showed overexpression of p53. When present together in a cholangiocarcinoma, cancer cells expressing D10 were distinct from those displaying 17NM or MUC5AC. Many more fluke-associated cholangiocarcinomas than sporadic cholangiocarcinomas displayed 17NM and p53 expression. Most cases of hyperplastic and dysplastic biliary epithelium expressed D10 strongly. Pyloric gland metaplasia and peribiliary glands displayed D10 and 1F6, with peribiliary gland hyperplasia more evident in the livers with fluke-associated cholangiocarcinoma; goblet cells in intestinal metaplasia stained for 17NM. No notable association of expression between any two antigens (including p53) was found in the cancers. Conclusions: Most cases of dysplastic biliary epithelium and cholangiocarcinoma display a Brunner or pyloric gland cell phenotype and a gastric foveolar cell phenotype. The expression of D10 in hyperplastic and dysplastic epithelium and in cholangiocarcinoma is consistent with a dysplasia-carcinoma sequence. Many more fluke-associated cholangiocarcinomas than sporadic cholangiocarcinoma display an intestinal goblet cell phenotype and overexpress p53, indicating differences in the aetiopathology of the cancers in the two groups of patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a growing interest in “medical gasses” for their antibacterial and anti-inflammatory properties. Hydrogen sulfide (H2S), a member of the family of gasotransmitters, is in fact increasingly being recognized as an important signaling molecule, but its precise role in the regulation of the inflammatory response is still not clear. For this reason, the aim of the first part of this thesis was to investigate the effects of H2S on the expression of pro-inflammatory cytokines, such as MCP-1, by using an in vitro model composed by both primary monocytes-derived macrophages cultures and the human monocytic cell line U937 infected with Mycoplasma fermentans, a well-known pro-inflammatory agent. In our experiments, we observed a marked increase in the production of pro-inflammatory cytokines in infected cells. In particular, MCP-1 was induced both at the RNA and at the protein level. To test the effects of H2S on infected cells, we treated the cells with two different H2S donors (NaHS and GYY4137), showing that both H2S treatments had anti-inflammatory effects in Mycoplasma-infected cells: the levels of MCP-1, both mRNA expression and protein production, were reduced. Our subsequent studies aimed at understanding the molecular mechanisms responsible for these effects, focused on two specific molecular pathways, both involved in inflammation: the NF-κB and the Nrf2 pathway. After treatment with pharmacological inhibitors, we demonstrated that Mycoplasma fermentans induces MCP-1 expression through the TLR-NF-κB pathway with the nuclear translocation of its subunits, while treatment with H2S completely blocked the nuclear translocation of NF-κB heterodimer p65/p50. Then, once infected cells were treated with H2S donors, we observed an increased protective effect of Nrf2 and also a decrease in ROS production. These results highlight the importance of H2S in reducing the inflammatory process caused by Mycoplasma fermentans. To this regard, it should be noted that several projects are currently ongoing to develop H2S-releasing compounds as candidate drugs capable of alleviating cell deterioration and to reduce the rate of decline in organ function. In the second part of this study, we investigated the role of Mycoplasma infection in cellular transformation. Infectious agents are involved in the etiology of many different cancers and a number of studies are still investigating the role of microbiota in tumor development. Mycoplasma has been associated with some human cancers, such as prostate cancer and non-Hodgkin’s lymphoma in HIV-seropositive people, and its potential causative role and molecular mechanisms involved are being actively investigated. To this regard, in vitro studies demonstrated that, upon infection, Mycoplasma suppresses the transcriptional activity of p53, key protein in the cancer suppression. As a consequence, infected cells were less susceptible to apoptosis and proliferated more than the uninfected cells. The mechanism(s) responsible for the Mycoplasma-induced inhibitory effect on p53 were not determined. Aim of the second part of this thesis was to better understand the tumorigenic role of the microorganism, by investigating more in details the effect(s) of Mycoplasma on p53 activity in an adenocarcinoma HCT116 cell line. Treatment of Mycoplasma-infected cells with 5FU or with Nutlin, two molecules that induce p53 activity, resulted in cellular proliferation comparable to untreated controls. These results suggested that Mycoplasma infection inhibited p53 activity. Immunoprecipitation of p53 with specific antibodies, and subsequent Gas Chromatography and Mass Spectroscopy (GC-MS) assays, allowed us to identify several Mycoplasma-specific proteins interacting with p53, such as DnaK, a prokaryotic heat shock protein and stress inducible chaperones. In cells transfected with DnaK we observed i) reduced p53 protein levels; ii) reduced activity and expression of p21, Bax and PUMA, iii) a marked increase in cells leaving G1 phase. Taken together, these data show an interaction between the human p53 and the Mycoplasma protein DnaK, with the consequent decreased p53 activity and decreased capability to respond to DNA damage and prevent cell proliferation. Our data indicate that Mycoplasma could be involved in cancer formation and the mechanism(s) has the potential to be a target for cancer diagnosis and treatment(s).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional loss of tumor suppressor protein p53 is a common feature in diverse human cancers. The ability of this protein to sense cellular damage and halt the progression of the cell cycle or direct the cells to apoptosis is essential in preventing tumorigenesis. Tumors having wild-type p53 also respond better to current chemotherapies. The loss of p53 function may arise from TP53 mutations or dysregulation of factors controlling its levels and activity. Probably the most significant inhibitor of p53 function is Mdm2, a protein mediating its degradation and inactivation. Clearly, the maintenance of a strictly controlled p53-Mdm2 route is of great importance in preventing neoplastic transformation. Moreover, impairing Mdm2 function could be a nongenotoxic way to increase p53 levels and activity. Understanding the precise molecular mechanisms behind p53-Mdm2 relationship is thus essential from a therapeutic point of view. The aim of this thesis study was to discover factors affecting the negative regulation of p53 by Mdm2, causing activation of p53 in stressed cells. As a model of cellular damage, we used UVC radiation, inducing a complex cellular stress pathway. Exposure to UVC, as well as to several chemotherapeutic drugs, causes robust transcriptional stress in the cells and leads to activation of p53. By using this model of cellular stress, our goal was to understand how and by which proteins p53 is regulated. Furthermore, we wanted to address whether these pathways affecting p53 function could be altered in human cancers. In the study, two different p53 pathway proteins, nucleophosmin (NPM) and promyelocytic leukemia protein (PML), were found to participate in the p53 stress response following UV stress. Subcellular translocations of these proteins were discovered rapidly after exposure to UV. The alterations in the cellular localizations were connected to transient interactions with p53 and Mdm2, implicating their significance in the regulation of p53 stress response. NPM was shown to control Mdm2-p53 interface and mediate p53 stabilization by blocking the ability of Mdm2 to promote p53 degradation. Furthermore, NPM mediated p53 stabilization upon viral insult. We further detected a connection between cellular pathways of NPM and PML, as PML was found to associate with NPM in UV-radiated cells. The observed temporal UV-induced interactions strongly imply existence of a multiprotein complex participating in the p53 response. In addition, PML controlled the UV response of NPM, its localization and complex formation with chromatin associated factors. The relevance of the UV-promoted interactions was demonstrated in studies in a human leukemia cell line, being under abnormal transcriptional repression due to expression of oncogenic PML-RARa fusion protein. Reversing the leukemic phenotype with a therapeutically significant drug was associated with similar complex formation between p53 and its partners as following UV. In conclusion, this thesis study identifies novel p53 pathway interactions associated with the recovery from UV-promoted as well as oncogenic transcriptional repression.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed a new method for the analysis of voids in proteins (defined as empty cavities not accessible to solvent). This method combines analysis of individual discrete voids with analysis of packing quality. While these are different aspects of the same effect, they have traditionally been analysed using different approaches. The method has been applied to the calculation of total void volume and maximum void size in a non-redundant set of protein domains and has been used to examine correlations between thermal stability and void size. The tumour-suppressor protein p53 has then been compared with the non-redundant data set to determine whether its low thermal stability results from poor packing. We found that p53 has average packing, but the detrimental effects of some previously unexplained mutations to p53 observed in cancer can be explained by the creation of unusually large voids. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA) osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods: Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD) counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results: GLA caused a significant decrease in tumour size (75 +/- 8.8%) and reduced MVD by 44 +/- 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF) (71 +/- 16%) and the VEGF receptor Flt1 (57 +/- 5.8%) but not Flk1. Expression of ERK1/2 was also reduced by 27 +/- 7.7% and 31 +/- 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2) was reduced by 35 +/- 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 +/- 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 +/- 18%) while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 +/- 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 +/- 7.3%) while p21 remained unchanged. The expression of p53 was increased (44 +/- 16%) by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 +/- 11%) of BrdU incorporation into the tumour in vivo. Conclusion: Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein expression of VEGF, Flt1, ERK1, ERK2, MMP2, Cyclin D1, pRb, p53 and p27. Combination therapy using drugs with other, complementary targets and GLA could lead to gains in treatment efficacy in this notoriously difficult to treat tumour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N`]copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection is an important cause of morbidity and mortality globally, and often leads to end-stage liver disease. The DNA damage checkpoint pathway induces cell cycle arrest for repairing DNA in response to DNA damage. HCV infection has been involved in this pathway. In this study, we assess the effects of HCV NS2 on DNA damage checkpoint pathway. We have observed that HCV NS2 induces ataxia-telangiectasia mutated checkpoint pathway by inducing Chk2, however, fails to activate the subsequent downstream pathway. Further study suggested that p53 is retained in the cytoplasm of HCV NS2 expressing cells, and p21 expression is not enhanced. We further observed that HCV NS2 expressing cells induce cyclin E expression and promote cell growth. Together these results suggested that HCV NS2 inhibits DNA damage response by altering the localization of p53, and may play a role in the pathogenesis of HCV infection. © 2013 Bitter et al.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)