948 resultados para P element regulation


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antioxidant vitamins C and E have protective properties in genetic hypertension associated with enhanced oxidative stress. This study investigated whether vitamins C and/or E modulate vascular function by regulating enzymatic activities of endothelial nitric oxide synthase (eNOS) and NAD(P)H oxidase using thoracic aortas of 20- to 22-week-old male spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar-Kyoto rats (WKY). SHR aortas had impaired relaxant responses to acetylcholine but not to sodium nitroprusside, despite an 2-fold increase in eNOS activity and NO release. The levels of superoxide anion (O2 ), a potent NO scavenger, and NAD(P)H oxidase activity were also 2-fold higher in SHR aortas. Mechanical but not pharmacological inactivation of endothelium (by rubbing and 100 mol/L L-NAME, respectively) significantly abrogated O2 in both strains. Treatments of SHR aortas with NAD(P)H oxidase inhibitors, namely diphenyleneiodinium and apocynin, significantly diminished O2 production. The incubation of SHR aortas with different concentrations of vitamin C (10 to 100 mol/L) and specifically with high concentrations of vitamin E (100 mol/L) improved endothelial function, reduced superoxide production as well as NAD(P)H oxidase activity, and increased eNOS activity and NO generation in SHR aortas to the levels observed in vitamin C- and E-treated WKY aortas. Our results reveal endothelial NAD(P)H oxidase as the major source of vascular O2 in SHR and also show that vitamins C and E are critical in normalizing genetic endothelial dysfunction through regulation of eNOS and NAD(P)H oxidase activities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background. It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a traslational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods. A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry have been used in this study. Results. The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a traslational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5' end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5' end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions. The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we have demonstrated that TSA in fact, differentially regulates both ABCB1 promoters, downregulating the upstream promoter that is responsible for active P-glycoprotein expression. These results suggest that iHDACs such as TSA may in fact potentiate the effects of antitumoral drugs that are substrates of Pgp. Finally, we have also demonstrate that TSA upregulates RUNDC3B mRNA independently of the ABCB1 promoter in use.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

P2-2 NAC-MYB-BASED TRANSCRIPCIONAL NETWORK INVOLVED IN THE REGULATION OF PHENYLALANINE BIOSYNTHESIS IN P. PINASTER Mª Belén Pascual, Rafael A. Cañas, Blanca Craven-Bartle, Francisco M. Cánovas and Concepción Ávila Departamento de Biología Molecular y Bioquímica. Facultad de Ciencias. Universidad de Málaga. Campus de teatinos s/n, Málaga, Spain Email: cavila@uma.es Conifer trees divert large quantities of carbon into the biosynthesis of phenylpropanoids, particularly to generate lignin, an important constituent of wood. Since phenylalanine is the precursor for phenylpropanoid biosynthesis, the precise regulation of phenylalanine synthesis and use should occur simultaneously. This crucial pathway is finely regulated primarily at the transcriptional level. Transcriptome analyses indicate that the transcription factors (TFs) preferentially expressed during wood formation in plants belong to the MYB and NAC families. Craven-Bartle et al. (2013) have shown that Myb8 is a candidate regulator of key genes in phenylalanine biosynthesis involved in the supply of the phenylpropane carbon skeleton necessary for lignin biosynthesis. This TF is able to bind AC elements present in the promoter regions of these genes to activate transcription. In Arabidopsis, the transcriptional network controlling secondary cell wall involves NAC-domain regulators operating upstream Myb transcription factors. We have identified in the P. pinaster genome three NAC proteins as potential candidates to be involved in vascular development. One of them, PpNAC1 is expressed both in xylem and compression wood from adult trees and has been thoroughly characterized. Its role upstream the transcriptional network involving Myb8 will be discussed. The understanding of the transcriptional regulatory network associated to phenylpropanoids and lignin biosynthesis in conifers is crucial for future applications in tree improvement and sustainable forest management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although various abutment connections and materials have recently been introduced, insufficient data exist regarding the effect of stress distribution on their mechanical performance. The purpose of this study was to investigate the effect of different abutment materials and platform connections on stress distribution in single anterior implant-supported restorations with the finite element method. Nine experimental groups were modeled from the combination of 3 platform connections (external hexagon, internal hexagon, and Morse tapered) and 3 abutment materials (titanium, zirconia, and hybrid) as follows: external hexagon-titanium, external hexagon-zirconia, external hexagon-hybrid, internal hexagon-titanium, internal hexagon-zirconia, internal hexagon-hybrid, Morse tapered-titanium, Morse tapered-zirconia, and Morse tapered-hybrid. Finite element models consisted of a 4×13-mm implant, anatomic abutment, and lithium disilicate central incisor crown cemented over the abutment. The 49 N occlusal loading was applied in 6 steps to simulate the incisal guidance. Equivalent von Mises stress (σvM) was used for both the qualitative and quantitative evaluation of the implant and abutment in all the groups and the maximum (σmax) and minimum (σmin) principal stresses for the numerical comparison of the zirconia parts. The highest abutment σvM occurred in the Morse-tapered groups and the lowest in the external hexagon-hybrid, internal hexagon-titanium, and internal hexagon-hybrid groups. The σmax and σmin values were lower in the hybrid groups than in the zirconia groups. The stress distribution concentrated in the abutment-implant interface in all the groups, regardless of the platform connection or abutment material. The platform connection influenced the stress on abutments more than the abutment material. The stress values for implants were similar among different platform connections, but greater stress concentrations were observed in internal connections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ki-1/57 (HABP4) and CGI-55 (SERBP1) are regulatory proteins and paralogs with 40.7% amino acid sequence identity and 67.4% similarity. Functionally, they have been implicated in the regulation of gene expression on both the transcriptional and mRNA metabolism levels. A link with tumorigenesis is suggested, since both paralogs show altered expression levels in tumor cells and the Ki-1/57 gene is found in a region of chromosome 9q that represents a haplotype for familiar colon cancer. However, the target genes regulated by Ki-1/57 and CGI-55 are unknown. Here, we analyzed the alterations of the global transcriptome profile after Ki-1/57 or CGI-55 overexpression in HEK293T cells by DNA microchip technology. We were able to identify 363 or 190 down-regulated and 50 or 27 up-regulated genes for Ki-1/57 and CGI-55, respectively, of which 20 were shared between both proteins. Expression levels of selected genes were confirmed by qRT-PCR both after protein overexpression and siRNA knockdown. The majority of the genes with altered expression were associated to proliferation, apoptosis and cell cycle control processes, prompting us to further explore these contexts experimentally. We observed that overexpression of Ki-1/57 or CGI-55 results in reduced cell proliferation, mainly due to a G1 phase arrest, whereas siRNA knockdown of CGI-55 caused an increase in proliferation. In the case of Ki-1/57 overexpression, we found protection from apoptosis after treatment with the ER-stress inducer thapsigargin. Together, our data give important new insights that may help to explain these proteins putative involvement in tumorigenic events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Galectin-3 (gal-3) is a β-galactoside binding protein related to many tumoral aspects, e.g. angiogenesis, cell growth and motility and resistance to cell death. Evidence has shown its upregulation upon hypoxia, a common feature in solid tumors such as glioblastoma multiformes (GBM). This tumor presents a unique feature described as pseudopalisading cells, which accumulate large amounts of gal-3. Tumor cells far from hypoxic/nutrient deprived areas express little, if any gal-3. Here, we have shown that the hybrid glioma cell line, NG97ht, recapitulates GBM growth forming gal-3 positive pseudopalisades even when cells are grafted subcutaneously in nude mice. In vitro experiments were performed exposing these cells to conditions mimicking tumor areas that display oxygen and nutrient deprivation. Results indicated that gal-3 transcription under hypoxic conditions requires previous protein synthesis and is triggered in a HIF-1α and NF-κB dependent manner. In addition, a significant proportion of cells die only when exposed simultaneously to hypoxia and nutrient deprivation and demonstrate ROS induction. Inhibition of gal-3 expression using siRNA led to protein knockdown followed by a 1.7-2.2 fold increase in cell death. Similar results were also found in a human GBM cell line, T98G. In vivo, U87MG gal-3 knockdown cells inoculated subcutaneously in nude mice demonstrated decreased tumor growth and increased time for tumor engraftment. These results indicate that gal-3 protected cells from cell death under hypoxia and nutrient deprivation in vitro and that gal-3 is a key factor in tumor growth and engraftment in hypoxic and nutrient-deprived microenvironments. Overexpression of gal-3, thus, is part of an adaptive program leading to tumor cell survival under these stressing conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study proposed to evaluate the mandibular biomechanics in the posterior dentition based on experimental and computational analyses. The analyses were performed on a model of human mandible, which was modeled by epoxy resin for photoelastic analysis and by computer-aided design for finite element analysis. To standardize the evaluation, specific areas were determined at the lateral surface of mandibular body. The photoelastic analysis was configured through a vertical load on the first upper molar and fixed support at the ramus of mandible. The same configuration was used in the computer simulation. Force magnitudes of 50, 100, 150, and 200 N were applied to evaluate the bone stress. The stress results presented similar distribution in both analyses, with the more intense stress being at retromolar area and oblique line and alveolar process at molar level. This study presented the similarity of results in the experimental and computational analyses and, thus, showed the high importance of morphology biomechanical characterization at posterior dentition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The SLC8A1 gene, which encodes the Na(+)/Ca(2+) exchanger, plays a key role in calcium homeostasis. Our previous gene expression oligoarray data revealed SLC8A1 underexpression in penile carcinoma (PeCa). The aim of this study was to investigate whether the dysregulation of SLC8A1 expression is associated with apoptosis and cell proliferation in PeCa, via modulation of calcium concentration. The underlying mechanisms of SLC8A1 underexpression were also explored, focusing on copy number alteration and microRNA. Transcript levels of SLC8A1 gene and miR-223 were evaluated by quantitative PCR, comparing PeCa samples with normal glans tissues. SLC8A1 copy number was evaluated by microarray-based comparative genomic hybridization (array-CGH). Caspase-3 and Ki-67 immunostaining, as well as calcium distribution by Laser Ablation Imaging Inductively Coupled Plasma Mass Spectrometry [LA(i)-ICP-MS], were investigated in both normal and tumor samples. Confirming our previous data, SLC8A1 underexpression was detected in PeCa samples (P=0.001) and was not associated with gene copy number loss. In contrast, overexpression of miR-223 (P=0.002) was inversely correlated with SLC8A1 (P=0.015, r=-0.426), its putative repressor. In addition, SLC8A1 underexpression was associated with decreased calcium distribution, high Ki-67 and low caspase-3 immunoexpression in PeCa when compared with normal tissues. Down-regulation of the SLC8A1 gene, most likely mediated by its regulator miR-223, can lead to reduced calcium levels in PeCa and, consequently, to suppression of apoptosis and increased tumor cell proliferation. These data suggest that the miR-223-NCX1-calcium-signaling axis may represent a potential therapeutic approach in PeCa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maxillofacial trauma resulting from falls in elderly patients is a major social and health care concern. Most of these traumatic events involve mandibular fractures. The aim of this study was to analyze stress distributions from traumatic loads applied on the symphyseal, parasymphyseal, and mandibular body regions in the elderly edentulous mandible using finite-element analysis (FEA). Computerized tomographic analysis of an edentulous macerated human mandible of a patient approximately 65 years old was performed. The bone structure was converted into a 3-dimensional stereolithographic model, which was used to construct the computer-aided design (CAD) geometry for FEA. The mechanical properties of cortical and cancellous bone were characterized as isotropic and elastic structures, respectively, in the CAD model. The condyles were constrained to prevent free movement in the x-, y-, and z-axes during simulation. This enabled the simulation to include the presence of masticatory muscles during trauma. Three different simulations were performed. Loads of 700 N were applied perpendicular to the surface of the cortical bone in the symphyseal, parasymphyseal, and mandibular body regions. The simulation results were evaluated according to equivalent von Mises stress distributions. Traumatic load at the symphyseal region generated low stress levels in the mental region and high stress levels in the mandibular neck. Traumatic load at the parasymphyseal region concentrated the resulting stress close to the mental foramen. Traumatic load in the mandibular body generated extensive stress in the mandibular body, angle, and ramus. FEA enabled precise mapping of the stress distribution in a human elderly edentulous mandible (neck and mandibular angle) in response to 3 different traumatic load conditions. This knowledge can help guide emergency responders as they evaluate patients after a traumatic event.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: The ability to predict and understand which biomechanical properties of the cornea are responsible for the stability or progression of keratoconus may be an important clinical and surgical tool for the eye-care professional. We have developed a finite element model of the cornea, that tries to predicts keratoconus-like behavior and its evolution based on material properties of the corneal tissue. METHODS: Corneal material properties were modeled using bibliographic data and corneal topography was based on literature values from a schematic eye model. Commercial software was used to simulate mechanical and surface properties when the cornea was subject to different local parameters, such as elasticity. RESULTS: The simulation has shown that, depending on the corneal initial surface shape, changes in local material properties and also different intraocular pressures values induce a localized protuberance and increase in curvature when compared to the remaining portion of the cornea. CONCLUSIONS: This technique provides a quantitative and accurate approach to the problem of understanding the biomechanical nature of keratoconus. The implemented model has shown that changes in local material properties of the cornea and intraocular pressure are intrinsically related to keratoconus pathology and its shape/curvature.