880 resultados para Ozone water treatment


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis offered a step forward in the development of cheap and effective materials for water treatment. It described the modification of naturally abundant clay minerals with organic molecules, and used the modified clays as effective adsorbents for the removal of recalcitrant organic water pollutants. The outcome of the study greatly extended our understanding of the synthesis and characteristic properties of clay and modified clay minerals, provided optimistic evaluation of the modified clays for environmental remediation and offered potential utility for clay minerals in the industry and environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The body of the thesis contained two separate elements which made an original contribution to fundamental understanding in the areas of photocatalysis, chemical synthesis and water treatment. Research on chemical reactions catalyzed by noble metal nanoparticles (such as gold) or surface complex grafted metal oxides which can be driven by sunlight at ambient temperature and the second element on radioactive cesium (137Cs+) cations and iodine (125I-) anions recovery by the unique structural features of titanate nanostructures for firmly capture and safe storage; the works has been all published in journals that are rated at the top of their respective fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The recommendations for the first aid treatment of burn injuries have previously been based upon conflicting published studies and as a result the recommendations have been vague with respect to optimal first aid treatment modality, temperature, duration and delay after which treatment is still effective. The public have also continued to use treatments such as ice and alternative therapies, however there is little evidence to support their use. Recently there have been several studies conducted by burn researchers in Australia which have enabled the recommendations to be clarified. First aid should consist of cool running water (2-15°C), applied for 20 minutes duration, as soon as possible but for up to 3 hours after the burn injury has occurred. Ice should not be used and alternative therapies should only be used to relieve pain as an adjunct to cold water treatment. Optimal first aid treatment significantly reduces tissue damage, hastens wound re-epithelialisation and reduces scarring and should be promoted widely to the public.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of technologies for water desalination and purification is critical to meet the global challenges of insufficient water supply and inadequate sanitation, especially for point-of-use applications. Conventional desalination methods are energy and operationally intensive, whereas adsorption-based techniques are simple and easy to use for point-of-use water purification, yet their capacity to remove salts is limited. Here we report that plasma-modified ultralong carbon nanotubes exhibit ultrahigh specific adsorption capacity for salt (exceeding 400% by weight) that is two orders of magnitude higher than that found in the current state-of-the-art activated carbon-based water treatment systems. We exploit this adsorption capacity in ultralong carbon nanotube-based membranes that can remove salt, as well as organic and metal contaminants. These ultralong carbon nanotube-based membranes may lead to next-generation rechargeable, point-of-use potable water purification appliances with superior desalination, disinfection and filtration properties. © 2013 Macmillan Publishers Limited.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mining industry faces three long term strategic risks in relation to its water and energy use: 1) securing enough water and energy to meet increased production; 2) reducing water use, energy consumption and emissions due to social, environmental and economic pressures; and 3) understanding the links between water and energy, so that an improvement in one area does not create an adverse effect in another. This project helps the industry analyse these risks by creating a hierarchical systems model (HSM) that represents the water and energy interactions on a sub-site, site and regional scales; which is coupled with a flexible risk framework. The HSM consists of: components that represent sources of water and energy; activities that use water and energy and off-site destinations of water and produced emissions. It can also represent more complex components on a site, with inbuilt examples including tailings dams and water treatment plants. The HSM also allows multiple sites and other infrastructure to be connected together to explore regional water and energy interactions. By representing water and energy as a single interconnected system the HSM can explore tradeoffs and synergies. For example, on a synthetic case study, which represents a typical site, simulations suggested that while a synergy in terms of water use and energy use could be made when chemical additives were used to enhance dust suppression, there were trade-offs when either thickened tailings or dry processing were used. On a regional scale, the HSM was used to simulate various scenarios, including: mines only withdrawing water when needed; achieving economics-of-scale through use of a single centralised treatment plant rather than smaller decentralised treatment plants; and capturing of fugitive emissions for energy generation. The HSM also includes an integrated risk framework for interpreting model output, so that onsite and off-site impacts of various water and energy management strategies can be compared in a managerial context. The case studies in this report explored company, social and environmental risks for scenarios of regional water scarcity, unregulated saline discharge, and the use of plantation forestry to offset carbon emissions. The HSM was able to represent the non-linear causal relationship at the regional scale, such as the forestry scheme offsetting a small percentage of carbon emissions but causing severe regional water shortages. The HSM software developed in this project will be released as an open source tool to allow industry personnel to easily and inexpensively quantify and explore the links between water use, energy use, and carbon emissions. The tool can be easily adapted to represent specific sites or regions. Case studies conducted in this project highlighted the potential complexity of these links between water, energy, and carbon emissions, as well as the significance of the cumulative effects of these links over time. A deeper understanding of these links is vital for the mining industry in order to progress to more sustainable operations, and the HSM provides an accessible, robust framework for investigating these links.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Leptospirosis outbreaks have been associated with many common water events including water consumption, water sports, environmental disasters and occupational exposure. The ability of leptospires to survive in moist environments makes them a high risk agent for infection following contact with any contaminated water source. Water treatment processes reduce the likelihood of leptospirosis or other microbial agents causing infection provided they do not malfunction and the distribution networks are maintained. Notably, there are many differences in water treatment systems around the world, particularly between developing and developed countries. Detection of leptospirosis in water samples is uncommonly performed by molecular methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Common to many types of water and wastewater is the presence of sodium ions which can be removed by desalination technologies, such as reverse osmosis and ion exchange. The focus of this investigation was ion exchange as it potentially offered several advantages compared to competing methods. The equilibrium and column behaviour of a strong acid cation (SAC) resin was examined for the removal of sodium ions from aqueous sodium chloride solutions of varying normality as well as a coal seam gas water sample. The influence of the bottle-point method to generate the sorption isotherms was evaluated and data interpreted with the Langmuir Vageler, Competitive Langmuir, Freundlich, and Dubinin-Astakhov models. With the constant concentration bottle point method, the predicted maximum exchange levels of sodium ions on the resin ranged from 61.7 to 67.5 g Na/kg resin. The general trend was that the lower the initial concentration of sodium ions in the solution, the lower the maximum capacity of the resin for sodium ions. In contrast, the constant mass bottle point method was found to be problematic in that the isotherm profiles may not be complete, if experimental parameters were not chosen carefully. Column studies supported the observations of the equilibrium studies, with maximum sodium loading of ca. 62.9 g Na/kg resin measured, which was in excellent agreement with the predictions of the data from the constant concentration bottle point method. Equilibria involving coal seam gas water were more complex due to the presence of sodium bicarbonate in solution, albeit the maximum loading capacity for sodium ions was in agreement with the results from the more simple sodium chloride solutions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cyanobacterial mass occurrences, also known as water blooms, have been associated with adverse health effects of both humans and animals. They can also be a burden to drinking water treatment facilities. Risk assessments of the blooms have generally focused on the cyanobacteria themselves and their toxins. However, heterotrophic bacteria thriving among cyanobacteria may also be responsible for many of the adverse health effects, but their role as the etiological agents of these health problems is poorly known. In addition, studies on the water purification efficiency of operating water treatment plants during cyanobacterial mass occurrences in their water sources are rare. In the present study, over 600 heterotrophic bacterial strains were isolated from natural freshwater, brackish water or from treated drinking water. The sampling sites were selected as having frequent cyanobacterial occurrences in the water bodies or in the water sources of the drinking water treatment plants. In addition, samples were taken from sites where cyanobacterial water blooms were surmised to have caused human health problems. The isolated strains represented bacteria from 57 different genera of the Gamma-, Alpha- or Betaproteobacteria, Actinobacteria, Flavobacteria, Sphingobacteria, Bacilli and Deinococci classes, based on their partial 16S rRNA sequences. Several isolates had no close relatives among previously isolated bacteria or cloned 16S rRNA genes of uncultivated bacteria. The results show that water blooms are associated with a diverse community of cultivable heterotrophic bacteria. Chosen subsets of the isolated strains were analysed for features such as their virulence gene content and possible effect on cyanobacterial growth. Of the putatively pathogenic haemolytic strains isolated in the study, the majority represented the genus Aeromonas. Therefore, the Aeromonas spp. strains isolated from water samples associated with adverse health effects were screened for the virulence gene types encoding for enterotoxins (ast, alt and act/aerA/hlyA), flagellin subunits (flaA/flaB), lipase (lip/pla/lipH3/alp-1) and elastase (ahyB) by PCR. The majority (90%) of the Aeromonas strains included one or more of the six screened Aeromonas virulence gene types. The most common gene type was act, which was present in 77% of the strains. The fla, ahyB and lip genes were present in 30 37% of the strains. The prevalence of the virulence genes implies that the Aeromonas may be a factor in some of the cyanobacterial associated health problems. Of the 183 isolated bacterial strains that were studied for possible effects on cyanobacterial growth, the majority (60%) either enhanced or inhibited growth of cyanobacteria. In most cases, they enhanced the growth, which implies mutualistic interactions. The results indicate that the heterotrophic bacteria have a role in the rise and fall of the cyanobacterial water blooms. The genetic and phenotypic characteristics and the ability to degrade cyanobacterial hepatotoxins of 13 previously isolated Betaproteobacteria strains, were also studied. The strains originated from Finnish lakes with frequent cyanobacterial occurrence. Tested strains degraded microcystins -LR and -YR and nodularin. The strains could not be assigned to any described bacterial genus or species based on their genetic or phenotypic features. On the basis of their characteristics a new genus and species Paucibacter toxinivorans was proposed for them. The water purification efficiency of the drinking water treatment processes during cyanobacterial water bloom in water source was assessed at an operating surface water treatment plant. Large phytoplankton, cyanobacterial hepatotoxins, endotoxins and cultivable heterotrophic bacteria were efficiently reduced to low concentrations, often below the detection limits. In contrast, small planktonic cells, including also possible bacterial cells, regularly passed though the water treatment. The passing cells may contribute to biofilm formation within the water distribution system, and therefore lower the obtained drinking water quality. The bacterial strains of this study offer a rich source of isolated strains for examining interactions between cyanobacteria and the heterotrophic bacteria associated with them. The degraders of cyanobacterial hepatotoxins could perhaps be utilized to assist the removal of the hepatotoxins during water treatment, whereas inhibitors of cyanobacterial growth might be useful in controlling cyanobacterial water blooms. The putative pathogenicity of the strains suggests that the health risk assessment of the cyanobacterial blooms should also cover the heterotrophic bacteria.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purification of drinking water is routinely achieved by use of conventional coagulants and disinfection procedures. However, there are instances such as flood events when the level of turbidity reaches extreme levels while NOM may be an issue throughout the year. Consequently, there is a need to develop technologies which can effectively treat water of high turbidity during flood events and natural organic matter (NOM) content year round. It was our hypothesis that pebble matrix filtration potentially offered a relatively cheap, simple and reliable means to clarify such challenging water samples. Therefore, a laboratory scale pebble matrix filter (PMF) column was used to evaluate the turbidity and natural organic matter (NOM) pre-treatment performance in relation to 2013 Brisbane River flood water. Since the high turbidity was only a seasonal and short term problem, the general applicability of pebble matrix filters for NOM removal was also investigated. A 1.0 m deep bed of pebbles (the matrix) partly in-filled with either sand or crushed glass was tested, upon which was situated a layer of granular activated carbon (GAC). Turbidity was measured as a surrogate for suspended solids (SS), whereas, total organic carbon (TOC) and UV Absorbance at 254 nm were measured as surrogate parameters for NOM. Experiments using natural flood water showed that without the addition of any chemical coagulants, PMF columns achieved at least 50% turbidity reduction when the source water contained moderate hardness levels. For harder water samples, above 85% turbidity reduction was obtained. The ability to remove 50% turbidity without chemical coagulants may represent significant cost savings to water treatment plants and added environmental benefits accrue due to less sludge formation. A TOC reduction of 35-47% and UV-254 nm reduction of 24-38% was also observed. In addition to turbidity removal during flood periods, the ability to remove NOM using the pebble matrix filter throughout the year may have the benefit of reducing disinfection by-products (DBP) formation potential and coagulant demand at water treatment plants. Final head losses were remarkably low, reaching only 11 cm at a filtration velocity of 0.70 m/h.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emerging contaminants (ECs) are chemical compounds commonly present in water. It is only recently that this family of compounds is being recognized as significant water pollutants (. ECs include a wide variety of chemicals such as pharmaceutical and personal care products (PPCPs), pesticides, hydrocarbons and hormones, among others, that once released into the environment exert adverse impacts on the human and wildlife endocrine system. Natural attenuation and conventional treatment processes are not capable of removing these micro-pollutants detected in wastewater influent and effluent and surface and drinking water. The main challenges related with presence of ECs in stormwater in the context of reuse are: a) Development of suitable laboratory test methodologies and protocols for ECs identification and quantification b) Identification of the sources of ECs in the urban environment; c) Understanding their impacts on human and/or ecosystem health; and d). Development of cost-effective removal technologies which are appropriate for large as well as small-scale application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The instability of an amorphous indium-gallium-zinc oxide (IGZO) field effect transistor is investigated upon water treatment. Electrical characteristics are measured before, immediately after and a few days after water treatment in ambient as well as in vacuum conditions. It is observed that after a few days of water exposure an IGZO field effect transistor (FET) shows relatively more stable behaviour as compared to before exposure. Transfer characteristics are found to shift negatively after immediate water exposure and in vacuum. More interestingly, after water exposure the off current is found to decrease by 1-2 orders of magnitude and remains stable even after 15 d of water exposure in ambient as well as in vacuum, whereas the on current more or less remains the same. An x-ray photoelectron spectroscopic study is carried out to investigate the qualitative and quantitative analysis of IGZO upon water exposure. The changes in the FET parameters are evaluated and attributed to the formation of excess oxygen vacancies and changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface, which can further lead to the formation of subgap states. An attempt is made to distinguish which parameters of the FET are affected by the changes in the electronic structure of the IGZO bulk channel and at the IGZO/SiO2 interface separately.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the mesotrophic-eutrophic Saidenbach Reservoir in Saxony, the nanoplankton and cyanobacteria have increased at the expense of diatom dominance, due to a doubling of the external phosphorus load in the last 15 years. However, the phosphorus sedimentation flux is still very high (up to 80% of the input), corresponding to more than 2 g m2 d-1 in terms of dry weight. There is a strong correlation between the abundance of diatoms in the euphotic zone and their sedimentation flux (with a delay of about 2 weeks). Only about 25% of the deposited material could be clearly attributed to plankton biomass; the remainder resulted from flocculation and precipitation processes or directly from the inflow of clay minerals. The ash content of the deposited material was high (73%). Thus the sedimentation flux can be considered to operate as an internal water-treatment/oligotrophication process within the lake. The neighbouring Neunzehnhain Reservoir still has a very clear water with a transparency up to 18 m depth. Though the sediment was not much lower than Saidenbach sediment in total phosphorus and total numbers of bacteria, sulphide was always absent and the ratio of Fe 2+ to Fe 3+ was very low in the upper (0- 5 cm) layer. Thus the external and internal phosphorus loads do not attain the critical level necessary to induce a ”phosphorus - phytoplankton” feedback loop.