988 resultados para Oxidation mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical oxidation of (benzylideneacetone)dicarbonyl(phosphine)iron(0) and benzylideneacetone)dicarbonyl(phosphite)iron(0) complexes was studied by cyclic voltammetry and controlled potential electrolysis in 0.5 M NaClO4 (dimethyl formamide). The results suggest that the electrode process involves a complicated mechanism, the species formed in the first oxidation step being highly unstable and its decomposition producing free benzylideneacetone, free phosphine or phosphite, solvated iron(II) species and carbon monoxide which adsorbs on the platinum electrode. A linear relationship between E(p/2)ox and the ligand parameter P(L) was obtained with E(s) = 0.41 V and beta = 0.964, where E(s) and beta-denote electron-richness and polarizability of the metal centre, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the voltammetric behavior of primaquine as a previous support to the further understanding of the delivery and action mechanisms of its respective synthesized prodrugs. There are few papers describing the drug behavior and most of the time no correlation between oxidation process and pH is done. Our results showed that primaquine oxidation is a one-step reaction involving two electrons with the charge transfer process being strongly pH-dependent in acid medium and pH-independent in a weak basic medium, with the neutral form being easily oxidized.This leads to the conclusion that quinoline nitrogen ring neutralization is a determinant step to the formation of the oxidized primaquine form. The existence of a relationship between the primaquine dissociation equilibrium and its electrooxidation process is shown.This work points the importance of voltammetric methodology as a tool for further studies on quantitative relationship studies between chemical structure and biological activity (QSAR) for electroactive drugs. (C) 2000 Elsevier B.V. S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidation of [Ni(cyclam)](2+), cyclam = 1,4,8,11-tetraazacyclotetradecane, accelerated by sulfur dioxide, was studied spectrophotometrically by following the formation of [Ni(cyclam)](3+) under the conditions: [Ni(cyclam)](2+) = 6.0 x 10(-3) M; initial [Ni(cyclam)](3+) = 8.0 x 10(-6) M; [cyclam] = 6.0 x 10(-3) M; [SO2] = (1.0-5.0) x 10(-4) M and 1.0 M perchloric acid in oxygen saturated solutions at 25.0 degrees C and ionic strength = 1.0 M. The oxidation reaction exhibits autocatalytic behavior in which the induction period depends on the initial Ni(III) concentration. A kinetic study of the reduction of Ni(III) by SO2 under anaerobic conditions, and the oxidation of Ni(II), showed that the rate-determining step involves reduction of Ni(III) by SO2 to produce the SO3.- radical, which rapidly reacts with dissolved oxygen to produce SO5.- and rapidly oxidizes Ni(II). The results clearly show a redox cycling process which depends on the balance of SO2 and oxygen concentrations in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tuberculostatic drug rifampicin has been described as a scavenger of reactive species. Additionally, the recent demonstration that oral therapy with a complex of rifampicin and horseradish peroxidase (HRP) was more effective than rifampicin alone, in an animal model of experimental leprosy, suggested the importance of redox reactions involving rifampicin and their relevance to the mechanism of action. Hence, we studied the oxidation of rifampicin catalyzed by HRP, since this enzyme may represent the prototype of peroxidation-mediated reactions. We found that the antibiotic is efficiently oxidized and that rifampicin-quinone is the product, in a reaction dependent on both HRP and hydrogen peroxide. The steady-state kinetic constants Km app (101±23 mmol/l), Vmax app (0.78±0.09 μmol/l·s-1) and kcat (5.1±0.6 s-1) were measured (n=4). The reaction rate was increased by the addition of co-substrates such as tetramethylbenzidine, salicylic acid, 5-aminosalicylic acid and paracetamol. This effect was explained by invoking an electron-transfer mechanism by which these drugs acted as mediators of rifampicin oxidation. We suggested that this drug interaction might be important at the inflammatory site. © 2005 Pharmaceutical Society of Japan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emission of ultraweak light from cells is a phenomenon associated with the oxidation of biomolecules by reactive oxygen species. The indole moiety present in tryptophan, serotonin and melatonin is frequently associated with the emission of light during the oxidation of these metabolites. This study presents results for hypobromous acid (HOBr) oxidation of tryptophan as a putative endogenous source of ultraweak light emission. We found that chemiluminescence elicited by the oxidation of tryptophan by HOBr was significantly higher than by hypochlorous acid (HOCl). This difference was related to secondary oxidation reactions, which were more intense using HOBr. The products identified during oxidation by HOCl, but depleted by using HOBr, were N-formylkynurenine, kynurenine, 1,2,3,3a,8,8a-hexahydro-3a-hydroxypyrrolo[2,3-b]-indole-2-carboxylic acid, oxindolylalanine and dioxindolylalanine. The emission of light is dependent on the free α-amino group of tryptophan, and hence, the indole of serotonin and melatonin, although efficiently oxidized, did not produce chemiluminescence. The emission of light was even greater using taurine monobromamine and dibromamine as the oxidant compared to HOBr. A mechanism based on bromine radical intermediates is suggested for the higher efficiency in light emission. Altogether, the experimental evidence described in the present study indicates that the oxidation of free tryptophan or tryptophan residues in proteins is an important source of ultraweak cellular emission of light. This light emission is increased in the presence of taurine, an amino acid present in large amounts in leukocytes, where this putative source of ultraweak light emission is even more relevant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon-supported Pd, Au and bimetallic PdAu (Pd:Au 90:10, 50:50 and 30:70 atomic ratios) electrocatalysts were prepared using electron beam irradiation. The obtained materials were characterized by energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their catalytic activities toward ethanol electro-oxidation were evaluated in an alkaline medium using electrochemical techniques, in situ attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR) analysis and a single alkaline direct ethanol fuel cell (ADEFC). EDX analyses showed that the actual Pd: Au atomic ratios were very similar to the nominal ones. X-ray diffractograms of PdAu/C electrocatalysts evidenced the presence of Pd-rich (fcc) and Au-rich (fcc) phases. TEM analysis showed a homogeneous dispersion of nanoparticles on the carbon support, with an average size in the range of 3-5 nm and broad size distributions. Cyclic voltammetry (CV) and chronoamperometry (CA) experiments revealed the superior ambient activity toward ethanol electro-oxidation of PdAu/C electrocatalysts with Pd: Au ratios of 90:10 and 50:50. In situ ATR-FTIR spectroscopy measurements have shown that the mechanism for ethanol electro-oxidation is dependent on catalyst composition, leading to different reaction products, such as acetaldehyde and acetate, depending on the number of electrons transferred. Experiments on a single ADEFC were conducted between 50 and 900 C, and the best performance of 44 mW cm-2 in 2.0molL-1 ethanol was obtained at 850C for the Pd:Au 90:10 catalysts. This superior performance is most likely associated with enhancement of ethanol adsorption on Pd, oxidation of the intermediates, the presence of gold oxide-hydroxyl species, low mean particle diameters and better distribution of particles on the support. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specimens of aluminum-based composites reinforced by silicon carbide nanoparticles (Al/SiCnp) produced by powder metallurgy (PM) were anodized under voltage control in tartaric-sulfuric acid (TSA). In this work, the influence of the amount of SiCnp on the film growth during anodizing was investigated. The current density versus time response and the morphology of the porous alumina film formed at the composite surface are compared to those concerning a commercial aluminum alloy (AA1050) anodized under the same conditions. The processing method of the aluminum alloys influences the efficiency of the anodizing process, leading to a lower thicknesses for the unreinforced Al-PM alloy regarding the AA1050. The current density versus time response is strongly dependent on the amount of SiCnp. The current peaks and the steady-state current density recorded at each voltage step increases with the SiCnp volume fraction due to the oxidation of the SiCnp. The formation mechanism of the anodic film on Al/SiCnp composites is different from that occurring in AA1050, partly due the heterogeneous distribution of the reinforcement particles in the metallic matrix, but also to the entrapment of SiCnp in the anodic film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of cytochrome c (cyt c) with cardiolipin (CL) induces protein conformational changes that favor peroxidase activity. This process has been correlated with CL oxidation and the induction of cell death. Here we report evidence demonstrating the generation of singlet molecular oxygen [O-2((1)Delta(g))] by a cyt c-CL complex in a model membrane containing CL. The formation of singlet oxygen was directly evidenced by luminescence measurements at 1270 nm and by chemical trapping experiments. Singlet oxygen generation required cyt c-CL binding and occurred at pH values higher than 6, consistent with lipid-protein interactions involving fully deprotonated CL species and positively charged residues in the protein. Moreover, singlet oxygen formation was specifically observed for tetralinoleoyl CL species and was not observed with monounsaturated and saturated CL species. Our results show that there are at least two mechanisms leading to singlet oxygen formation: one with fast kinetics involving the generation of singlet oxygen directly from CL hydroperoxide decomposition and the other involving CL oxidation. The contribution of the first mechanism was clearly evidenced by the detection of labeled singlet oxygen [O-18(2)((1)Delta(g))] from liposomes supplemented with 18-oxygen-labeled CL hydroperoxides. However quantitative analysis showed that singlet oxygen yield from CL hydroperoxides was minor (<5%) and that most of the singlet oxygen is formed from the second mechanism. Based on these data and previous findings we propose a mechanism of singlet oxygen generation through reactions involving peroxyl radicals (Russell mechanism) and excited triplet carbonyl intermediates (energy transfer mechanism).