1000 resultados para Owls - Ecology - Victoria


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Box-Ironbark forests occur on the inland hills of the Great Dividing Range in Australia, from western Victoria to southern Queensland. These dry, open forests are characteristically dominated by Eucalyptus species such as Red Ironbark E. tricarpa, Mugga Ironbark E. sideroxylon and Grey Box E. microcarpa. Within these forests, several Eucalyptus species are a major source of nectar for the blossom-feeding birds and marsupials that form a distinctive component of the fauna. In Victoria, approximately 83% of the original pre - European forests of the Box-Ironbark region have been cleared, and the remaining fragmented forests have been heavily exploited for gold and timber. This exploitation has lead to a change in the structure of these forests, from one dominated by large 80-100 cm diameter, widely -spaced trees to mostly small (≥40 cm DBH), more densely - spaced trees. This thesis examines the flowering ecology of seven Eucalyptus species within a Box-Ironbark community. These species are characteristic of Victorian Box-Ironbark forests; River Red Gum E. camaldulensis, Yellow Gum E. leucoxylon, Red Stringybark E. macrorhyncha, Yellow Box E. melliodora, Grey Box E. microcarpa, Red Box E. polyanthemos and Red Ironbark E. tricarpa. Specifically, the topics examined in this thesis are: (1) the floral character traits of species, and the extent to which these traits can be associated with syndromes of bird or insect pollination; (2) the timing, frequency, duration, intensity, and synchrony of flowering of populations and individual trees; (3) the factors that may explain variation in flowering patterns of individual trees through examination of the relationships between flowering and tree-specific factors of individually marked trees; (4) the influence of tree size on the flowering patterns of individually marked trees, and (5) the spatial and temporal distribution of the floral resources of a dominant species, E. tricarpa. The results are discussed in relation to the evolutionary processes that may have lead to the flowering patterns, and the likely effects of these flowering patterns on blossom-feeding fauna of the Box-Ironbark region. Flowering observations were made for approximately 100 individually marked trees for each species (a total of 754 trees). The flower cover of each tree was assessed at a mean interval of 22 (+ 0.6) days for three years; 1997, 1998 and 1999. The seven species of eucalypt each had characteristic flowering seasons, the timing of which was similar each year. In particular, the timing of peak flowering intensity was consistent between years. Other spatial and temporal aspects of flowering patterns for each species, including the percentage of trees that flowered, frequency of flowering, intensity of flowering and duration of flowering, displayed significant variation between years, between forest stands (sites) and between individual trees within sites. All seven species displayed similar trends in flowering phenology over the study, such that 1997 was a relatively 'poor' flowering year, 1998 a 'good' year and 1999 an 'average' year in this study area. The floral character traits and flowering seasons of the seven Eucalyptus species suggest that each species has traits that can be broadly associated with particular pollinator types. Differences between species in floral traits were most apparent between 'summer' and 'winter' flowering species. Winter - flowering species displayed pollination syndromes associated with bird pollination and summer -flowering species displayed syndromes more associated with insect pollination. Winter - flowering E. tricarpa and E. leucoxylon flowers, for example, were significantly larger, and contained significantly greater volumes of nectar, than those of the summer flowering species, such as E. camaldulensis and E. melliodom. An examination of environmental and tree-specific factors was undertaken to investigate relationships between flowering patterns of individually marked trees of E. microcarpa and E. tricarpa and a range of measures that may influence the observed patterns. A positive association with tree-size was the most consistent explanatory variable for variation between trees in the frequency and intensity of flowering. Competition from near-neighbours, tree health and the number of shrubs within the canopy area were also explanatory variables. The relationship between tree size and flowering phenology was further examined by using the marked trees of all seven species, selected to represent five size-classes. Larger trees (≥40 cm DBH) flowered more frequently, more intensely, and for a greater duration than smaller trees. Larger trees provide more abundant floral resources than smaller trees because they have more flowers per unit area of canopy, they have larger canopies in which more flowers can be supported, and they provide a greater abundance of floral resources over the duration of the flowering season. Heterogeneity in the distribution of floral resources was further highlighted by the study of flowering patterns of E. tricarpa at several spatial and temporal scales. A total of approximately 5,500 trees of different size classes were sampled for flower cover along transects in major forest blocks at each of five sample dates. The abundance of flowers varied between forest blocks, between transects and among tree size - classes. Nectar volumes in flowers of E. tricarpa were sampled. The volume of nectar varied significantly among flowers, between trees, and between forest stands. Mean nectar volume per flower was similar on each sample date. The study of large numbers of individual trees for each of seven species was useful in obtaining quantitative data on flowering patterns of species' populations and individual trees. The timing of flowering for a species is likely to be a result of evolutionary selective forces tempered by environmental conditions. The seven species' populations showed a similar pattern in the frequency and intensity of flowering between years (e.g. 1998 was a 'good' year for most species) suggesting that there is some underlying environmental influence acting on these aspects of flowering. For individual trees, the timing of flowering may be influenced by tree-specific factors that affect the ability of each tree to access soil moisture and nutrients. In turn, local weather patterns, edaphic and biotic associations are likely to influence the available soil moisture. The relationships between the timing of flowering and environmental conditions are likely to be complex. There was no evidence that competition for pollinators has a strong selective influence on the timing of flowering. However, as there is year-round flowering in this community, particular types of pollinators may be differentiated along a temporal gradient (e.g. insects in summer, birds in winter). This type of differentiation may have resulted in the co-evolution of floral traits and pollinator types, with flowers displaying adaptations that match the morphologies and energy requirements of the most abundant pollinators in any particular season. Spatial variation in flowering patterns was evident at several levels. This is likely to occur because of variation in climate, weather patterns, soil types, degrees of disturbance and biotic associations, which vary across the Box-Ironbark region. There was no consistency among sites between years in flowering patterns suggesting that factors affecting flowering at this level are complex. Blossom-feeding animals are confronted with a highly spatially and temporally patchy resource. This patchiness has been increased with human exploitation of these forests leading to a much greater abundance of small trees and fewer large trees. Blossom-feeding birds are likely to respond to this variation in different ways, depending upon diet-breadth, mobility and morphological and behavioural characteristics. Future conservation of the blossom-feeding fauna of Box-Ironbark forests would benefit from the retention of a greater number of large trees, the protection and enhancement of existing remnants, and revegetation with key species, such as E. leucoxylon, E. microcarpa and E. tricarpa. The selective clearing of summer flowering species, which occur on the more fertile areas, may have negatively affected the year-round abundance and distribution of floral resources. The unpredictability of the spatial distribution of flowering patches within the region means that all remnants are likely to be important foraging areas in some years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study examined the factors affecting the distribution and abundance of epifaunal caridean shrimps in seagrass meadows of the Hopkins River estuary in south-western Victoria, Australia, and investigated the life history patterns of the freshwater Parana australiensis, found for the first time in estuaries. Adult and sub-adult shrimps were surveyed in seagrass meadows along the estuary over two years, and their planktonic larvae were surveyed in adjacent waters. Three species were collected. The marine Palaemon serenus occurred only near the mouth, summer to autumn, in high salinities. The marine/estuarine Macrobrachium intermedium occurred throughout the estuary. Adults were most abundant in late autumn, and least abundant in summer (unlike trends reported in marine meadows). Densities were higher and less variable in downstream meadows. P. australiensis occurred in the upper estuary all year, most abundantly in spring, due to migration from the river after peak discharge. Ovigerous females dominated, while males, showing less migration into the estuary, dominated above estuarine influence. Adults disappeared from the estuary in summer as salinity rose. Breeding period for P. australiensis was briefer in the estuary (September-December) than upstream (July-April). M. intermedium began breeding later in the upper estuary (November/December-March) than in the lower estuary (October-March), probably reflecting a physiological response to lower salinity, rather than an interaction with P. australiensis. No ovigerous P. serenus were found in the estuary. Larvae of P. australiensis and M intermedium occurred abundantly throughout the estuary, but P. serenus larvae did not. P. australiensis was an early coloniser to the plankton after peak discharge (November-December). Larvae concentrated in the deep saline layer at the head of the intruding salt wedge, thus probably maintaining longitudinal position. Diurnal vertical migrations were evident within the salt wedge, and in a deep pool above tidal influence. M. intermedium larvae occurred October-May in the lower estuary and November-April in the upper estuary, peaking in abundance one to two months after P. australiensis. They were associated with low surface flows and surface salinities greater than 10, over an anoxic deeper layer. All three species exhibited extended development of euryhaline larvae in the laboratory. Tolerances and optimal salinities of larvae of the three species reflected their distributions. M. intermedium was the most euryhaline species. P. australiensis larvae were tolerant of higher salinities than juveniles of adults: capable of developing in salinity of at least 15. Most P. australiensis juveniles recruited to the estuary November-December, after which numbers declined dramatically. After settlement, most recruits probably migrated upstream out of the estuary. Two cohorts of M. intermedium recruited to the estuary from larvae in summer (December and February), but some juveniles also migrated from adjacent coastal waters. Post-larval migration was at least as important a determinant of abundance as direct recruitment from estuarine, planktonic larvae in all three species. Distributions among seagrass meadows along the estuary were determined primarily by physico-chemical patterns driven by hydrological changes. Seasonal variations in salinity and temperature were strongly associated with seasonal variations in shrimp abundance. Salinity tolerances of adults of the three species reflected their distribution patterns. Biotic interactions were more important in determining distributions within meadows. P. australiensis, when abundant, were associated with seagrass biomass. M. intermedium were also, but when seagrass was sparsest and least extensive. The two species apparently partitioned the seagrass meadow according to depth in early summer. Laboratory experiments suggested P. australiensis was displaced from deeper water by M. intermedium. Preference for vegetative complexity and competition for position within meadows suggest the underlying importance of predation in regulating shrimp populations. A survey of south-eastern Australian estuaries found P. australiensis larvae abundant in all stable, open, well-developed, salt-wedge estuaries where adults were abundant. Adults were most abundant in low salinities among submerged leafy macrophytes. Reproductive traits of P. australiensis were compared in estuarine and fresh reaches of three rivers. Early in the breeding season, egg size was smaller, and (size-specific) egg number larger in estuaries than upstream. A trade-off between egg size and egg number resulted in no difference in total (size-specific) reproductive investment between locations. Reproductive investment tended to decrease at some locations over the breeding season, and this decrease was a result of decreased egg size in most cases. The decrease in reproductive investment probably reflected reduced food availability for the adult, while the reduced egg size was probably a response to improved conditions for larval development. In the Hopkins River, larger egg size at upstream sites was reflected in larger early stage larvae. Later stage larvae were larger in the estuary, suggesting more favourable conditions for larval development. Allozyme electrophoresis showed the P. australiensis populations in each of the three rivers to be distinct. Allozyme frequencies were not different within the Hopkins River, but upstream and estuarine locations in the Curdies and Gellibrand were different. Although some variation in reproductive traits within catchments may have been due to genotypic differences, trade-offs between egg size and number, and decreases in egg size over summer were probably due to plastic responses to environmental cues. It is proposed P. australiensis inhabits and reproduces in both estuarine and freshwater environments by plastic response to environmental conditions. Recruitment to estuaries is dependent on the presence of suitable adult, littoral habitat, and a stable salt wedge for larval retention. Estuaries are important recruitment sites for P. australiensis, potentially allowing an extra brood each year before riverine recruitment. Estuarine broods could constitute a large part of the total fecundity of P. australiensis females. Euryhaline larvae and estuarine recruitment of P. australiensis suggest marine transport of larvae between estuaries as a possible dispersal mechanism for Paratya species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pittosporum undulatum Vent. (Sweet Pittosporum) is a densely foliaged tall shrub or small tree, native to the wet forests of south east Australia, This species now functions as a serious environmental weed in a range of habitats in Australia and on other continents and islands throughout the temperate, sub-tropical and tropical zones. This study investigated some of the ecological causes and consequences of P. undulatum invasion across a range of habitat types in south east Australia. Key aspects of P. undulatum biology and ecology investigated in the current study include; patterns of morphological variation across the range of habitats occupied (as a measure of the species’ plasticity), dispersal ecology and seed germinability, population structure and spatial pattern, community relationships and the ecological impacts of invasion. Phenotypic plasticity is considerable in P. undulatum. No clear patterns of geographic variation emerged from a study of leaf morphological attributes across the current range of this species on mainland south east Australia. The pattern of morphological variation is particularly complex in Victoria, where the invasion of this species is most advanced. The species’ adaptability to a range of environments and environmental conditions will likely promote further range expansion. The abundant winter fruit crop produced by functionally female P. undulatum plants attracts a suite of generalist opportunistic frugivores, which feed on P. undulatum fruits and seeds at various stages of fruit dehiscence, thereby enhancing dispersal opportunities for this species. P. undulatum seed collected from natural and invasive populations, at two stages of fruit maturity and from the scats and pellets of dispersal agents, displayed high germinability. European Blackbirds and Pied Currawongs are implicated as the main avian dispersal agents of P undulatum in south east Australia. The broader ecological implications of developing relationships between invasive fleshy-fruited bird-dispersed plant species and adaptive frugivores are likely to be considerable. The distribution of P. undulatutn seedlings was significantly negatively correlated with adult conspecifics and significantly positively correlated with trees and shrubs of other genera. This pattern reflects the importance of both firugivorous dispersal agents and the species’ germination and establishment requirements, in shaping the contagious distribution pattern typical of this species. These analyses suggest that recruitment opportunities for conspecific seedlings are limited beneath the canopy of adult conspecifics. Densities of P. undulatum were on average, 2.7 times higher in invaded populations, compared to the natural populations sampled. A male-bias was evident in all populations and no relationships between reproductive activity and the density of seedlings and juveniles were evident. Invading populations of P. undulatum impose substantial changes on ecosystem-level properties and functions. Mean species richness and cover-abundance declined notably once P. undulatum cover-abundance exceeded 20% at the invaded sites and 60% at the natural sites sampled. The natural communities sampled displayed comparatively greater resilience to the competitive effects of P. undulatum, but community attributes were affected at high densities and cover-abundance of this species. The cover-abundance of herbs and grasses declined most substantially with increasing P. undulatum at invaded sites, whereas, at the natural sites sampled, the species’ structural analogues appeared to be most affected by increasing P. undulatum cover-abundance. This study has demonstrated that the ecological consequences of P. undulatum population expansion are substantial and contribute to changes in the composition and successional trajectory of affected communities. These processes ultimately lead to the loss and simplification of biodiversity values and the homogenisation of affected habitats. P. undulatum has the potential to emerge as one of south east Australia's most serious environmental weed species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prompted by a lack of human dimensions research in Australia, this study investigated the values and knowledge relating to wildlife held by members of the public within distinct demographic subsets of the Victorian population and members of wildlife management stakeholder groups; and compared these characteristics with how Victorian wildlife managers perceive these groups. A combination of semi-structured interviews and postal questionnaires were used. Fifteen in-depth interviews were conducted to explore how wildlife managers perceive the values and knowledge of wildlife held by members of various subsets of the Victorian population. A total of 1,431 questionnaires were completed by members of 13 public and stakeholder groups throughout Victoria, and these were analysed to explore values and knowledge relating to wildlife in Victoria. The findings of this study suggest that Victorian people have a strong emotional attachment to individual animals (the humanistic value), and an interest in learning about wildlife (the curiosity/learning/interacting value). The dominionistic/wildlife-consumption, utilitarian-habitat, aesthetic and negativistic values were not expressed by the majority of respondents from the public samples. The data also suggest that Victorian people have relatively low levels of factual knowledge about Australian wildlife. Thus, wildlife managers should expect support for wildlife management objectives that reflect the strong humanistic orientation of Victorians and tailor management and education programs to appeal to this value and Victorians' interest in learning about wildlife. Members of the Field Naturalists Club of Victoria (FNCV), Bird Observers Club of Australia (BOCA), Australian Conservation Foundation (ACF) stakeholder groups and management agency Parks Victoria expressed a strong interest in learning about wildlife. Members of the Royal Society for the Prevention of Cruelty to Animals (RSPCA) obtained high humanistic value scores; and members of the Victorian Field and Game Association (VFGA) obtained high domimomstic/wildlife-consumption value scores. Importantly, the humanistic and curiosity/learning/interacting values were the most strongly expressed values in all six groups and these values could be the key to more effective communication and collaboration between groups. Relationships between demographic factors, and values and knowledge relating to wildlife were found. For example, rural Victorians held a stronger dominionistic/ wildlife-consumption value than urban Victorians; females held stronger humanistic, curiosity/learning/interacting and negativistic values than males; young Victorians (18-34 years) held a lower curiosity/learning/interacting value and lower factual knowledge of wildlife than older Victorians; and more highly educated Victorians were more knowledgeable about wildlife than people with less formal education. No statistically significant differences were found between the values and knowledge of wildlife held by different income classes. While relationships between demographic factors, and values and knowledge relating to wildlife were found, they were generally much smaller than expected based on wildlife managers' perceptions and previous research. For example, the results suggest that Victorian females have a slightly stronger humanistic value of wildlife than males do. However, the important message emerging from the data is that males and females both express a strong emotional attachment to individual animals. Importantly, the results indicate that the effects of demographic factors on values and knowledge relating to wildlife are not always consistent across different geographic locations and stakeholder groups. For example, the slightly stronger interest in learning about wildlife among females when compared with males was observed in the rural and urban-fringe samples but not in the urban samples. This suggests that caution must be used when generalising the findings from human dimensions studies from one type of community or stakeholder group to another. Management programs should be tailored to the specific characteristics of the target audience. The findings also indicate that Victorian wildlife managers have diverse perceptions about the values and knowledge of wildlife held by members of different publics and stakeholder groups, and that the perceptions held by wildlife managers are not always consistent with the actual values and knowledge of wildlife held by members of different publics and stakeholders. For example, counter to the perceptions expressed by the interviewed wildlife managers, the interest in and factual knowledge of wildlife held by members of voluntary conservation groups equalled or surpassed that of wildlife managers; young Victorian adults (18-34 years) held a slightly lower curiosity/learning/interacting value and slightly lower level of factual knowledge of wildlife than older Victorians; and rural and urban communities in Victoria held low dominionistic and utilitarian values. Such discrepancies highlight the importance of investigating the actual values and knowledge held by members of such groups, so that appropriate and effective wildlife management programs can be implemented. Inaccurate perceptions and assumptions may contribute to ineffective communication between managers, stakeholders and publics; and adversely effect the success of wildlife management programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear strips of vegetation set within a less-hospitable matrix are common features of landscapes throughout the world. Depending on location, form and function, these linear landscape elements include hedgerows, fencerows, shelterbelts, roadside or streamside strips and wildlife corridors. In many anthropogenically-modified landscapes, linear strips are important components for conservation because they provide a large proportion of the remaining wooded or shrubby habitat for fauna. They may also function to provide connectivity across the landscape. In some districts, the linear strips form an interconnected network of habitat. The spatial configuration of remnant habitat (size, shape and arrangement) may influence habitat suitability, and hence survival, of many species of plant and animal in modified landscapes. Near Euroa in south-eastern Australia, the clearing and fragmentation of temperate woodlands for agriculture has been extensive and, at present, less than 5% tree cover remains, most of which (83%) occurs as linear strips along roads and streams. The remainder of the woodland occurs as relatively small patches and single isolated trees scattered across the landscape. As an assemblage, arboreal marsupials are woodland dependent and vary in their sensitivity to habitat loss and fragmentation. This thesis focusses on determining the conservation status of arboreal marsupials in the linear network and understanding how they utilise the landscape mosaic. Specifically, the topics examined in this thesis are: (1) the composition of the arboreal marsupial assemblage in linear and non-linear woodland remnants; (2) the status and habitat preferences of species of arboreal marsupial within linear remnants; and (3) the ecology of a population of the Squirrel Glider Petaurus norfolcensis in the linear network, focusing on population dynamics, spatial organisation, and use of den trees. The arboreal marsupial fauna in the linear network was diverse, and comprised seven out of eight species known to occur in the district. The species detected within the strips were P. norfolcensis, the Sugar Glider Petaurus breviceps, Common Brushtail Possum Trichosums vulpecula, Common Ringtail Possum Pseudocheirus peregrinus, Brush-tailed Phascogale Phascogale tapoatafa, Koala Phascolarctos cinereus and Yellow-footed Antechinus Antechinus flavipes. The species not detected was the Feathertail Glider Acrabates pygmaeus. Survey sites in linear remnants (strips of woodland along roads and streams) supported a similar richness and density of arboreal mammals to sites in non-linear remnants (large patches or continuous tracts of woodland nearby). Furthermore, the combined abundance of all species of arboreal marsupials was significantly greater in sites in the linear remnants than in the non-linear remnants. This initial phase of the study provided no evidence that linear woodland remnants support a degraded or impoverished arboreal marsupial fauna in comparison with the nonlinear remnants surveyed. Intensive trapping of arboreal marsupials within a 15 km linear network between February 1997 and June 1998 showed that all species of arboreal marsupial (except A. pygmaeus) were present within the linear strips. Further analyses related trap-based abundance estimates to measures of habitat quality and landscape structure. Width of the linear habitat was significantly positively correlated with the combined abundance of all arboreal marsupials, as well as with the abundance of P. norfolcensis and T. vulpecula. The abundance of T. vulpecula was also significantly positively correlated with variation in overstorey species composition, Acacia density and the number of hollow-bearing trees. The abundance of P. norfolcensis was positively correlated with Acacia density and canopy width, and negatively correlated with distance to the nearest intersection with another linear remnant. No significant variables were identified to explain the abundance of P. tapoatafa, and there were insufficient captures of the remaining species to investigate habitat preferences. Petaurus norfolcensis were resident within the linear network and their density (0.95 -1.54 ha-1) was equal to the maximum densities recorded for this species in continuous forest elsewhere in south-eastern Australia. Rates of reproduction were also similar to those in continuous forest, with births occurring between May and December, a mean natality rate of 1.9, and a mean litter size of 1.7. Sex ratios never differed significantly from parity. Overall, the population dynamics of P. norfolcensis were comparable with published results for the species in contiguous forest, clearly suggesting that the linear remnants currently support a self-sustaining, viable population. Fifty-one P. norfolcensis were fitted with radio transmitters and tracked intermittently between December 1997 and November 1998. Home ranges were small (1.3 - 2.8 ha), narrow (20 - 40 m) and elongated (322 - 839 m). Home ranges were mostly confined to the linear remnants, although 80% of gliders also utilised small clumps of adjacent woodland within farm paddocks for foraging or denning. Home range size was significantly larger at intersections between two or more linear remnants than within straight sections of linear remnants. Intersections appeared to be important sites for social interaction because the overlap of home ranges of members of adjacent social groups was significantly greater at intersections than straight sections. Intersections provided the only opportunity for members of three or more social groups to interact, while still maintaining their territories. The 51 gliders were radiotracked to 143 different hollow-bearing trees on 2081 occasions. On average, gliders used 5.3 den trees during the study (range 1-15), and changed den trees every 4.9 days. The number of den trees used by each glider is likely to be conservative because the cumulative number of den trees continued to increase over the full duration of the study. When gliders shifted between den trees, the mean distance between consecutive den sites was 247 m. Den trees were located throughout a glider's home range, thereby reducing the need to return to a central den site and potentially minimising energy expenditure. Dens were usually located in large trees (mean diameter 88.5 cm) and were selected significantly more often than expected based on their occurrence within the landscape. The overall conclusion of this thesis is that the linear network I studied provides high quality habitat for resident populations of arboreal marsupials. Important factors influencing the suitability of the linear remnants appear to be the high level of network connectivity, the location on soils of high nutrient status, the high density of large trees and an acacia understorey. In highly fragmented landscapes, linear habitats as part of the remaining woodland mosaic have the potential to be an integral component in the conservation of woodland-dependent fauna. The habitat value of linear strips of vegetation should not be underestimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Age data revealed that growth of sand flathead samples caught within Port Phillip Bay is very different compared to those caught from outside the Bay. Results also show that recruitment is variable (dependent of several environmental parameter), and that this variability is largely responsible for trends in abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis investigates two adjacent volcanic maar lakes, with differences in chemical and biological properties. Lake Bullen Merri a brackish, phosphorous-limited lake that suffers from nuisance algal blooms and Lake Purrumbete a fresh, nitrogen-limited lake with diverse phytoplankton assemblage. Nutrient fluxes for both lakes are dominated by internal cycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The New Holland Mouse is critically endangered within Victoria. A decline in the species abundance resulted from below average rainfall and structural changes to habitat vegetation. A captive breeding program was established as part of the species recovery plan. Induced breeding throughout the year, under controlled conditions, was limited by the species aggressive behaviour.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable forest management has emerged as a major international forestry issue. This research assessed the potential contribution of certification and labelling to sustainable forest management in Victoria. The results indicate a potential demand for certified forest products and a consumer willingness to pay to ensure forests are managed sustainably.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basic limnology, nutrient and hydraulic budgets and recent history (using fossil remains in the sediments) of Lake Wallace have been studies to determine factors that predispose the lake to the development of potentially toxic algal blooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Along Victoria’s coastline there are 30 Marine Protected Areas (MPAs) that have been established to protect the state’s significant marine environmental and cultural values. These MPAs include 13 Marine National Parks (MNPs), 11 Marine Sanctuaries (MSs), 3 Marine and Coastal Parks, 2 Marine Parks, and a Marine Reserve, and together these account for 11.7% of the Victorian marine environment. The highly protected Marine National Park System, which is made up of the MNPs and MSs, covers 5.3% of Victorian waters and was proclaimed in November 2002. This system has been designed to be representative of the diversity of Victoria’s marine environment and aims to conserve and protect ecological processes, habitats, and associated flora and fauna. The Marine National Park System is spread across Victoria’s five marine bioregions with multiple MNPs and MSs in each bioregion, with the exception of Flinders bioregion which has one MNP. All MNPs and MSs are “no-take” areas and are managed under the National Parks Act (1975) - Schedules 7 and 8 respectively.

This report updates the first Marine Natural Values Study (Plummer et al. 2003) for the MPAs in the Central Victoria bioregion on the central coast of Victoria and is one of a series of five reports covering Victoria’s Marine National Park System. It uses the numerous monitoring and research programs that have increased our knowledge since declaration and aims to give a comprehensive overview of the important natural values of each MNP and MS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of ecology in a sustainable future is prominent in the media, academic writing and political decisions; as such environmental pressures, as well as economic, social and political, increasingly influence planning for the future. This paper looks at how this translates into the process for planning future cities – highlighting gaps in knowledge and issues of implementation. It draws on interdisciplinary sources to explore three main elements of the debate: What is urban ecology and why is it important to sustainable cities?; What gaps are there in the ecological knowledge of planners and policy makers and why are there gaps?; and How can urban ecology be integrated into the planning of future sustainable cities?. This paper does not aim to provide a definitive answer to the problem; rather it addresses the first two areas and identifies potential directions for the third. It takes Australia, as national, Victoria, as regional and Geelong, as local, points of reference.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Between 2004 and 2008 the diet and breeding success of a pair of Powerful Owls Ninox strenua were studied near Lakes Entrance, Victoria. In early November 2006 the adult female Powerful Owl was captured and radio-tracked for a period of 7.5 months. During this time the Owl's location was recorded on 111 occasions, including 65 nocturnal locations over 29 nights. Her home-range was calculated as 1589 ha using the Minimum Convex Polygon (MCP) method, or 871 ha based on the 95% Adaptive Kernel method. The area of forested habitat within the MCP home-range was 896 ha (the remainder representing cleared land). Her activity was centred primarily on the nesting gully where two dependent juveniles roosted, but several long-distance foraging expeditions (including roosting) that occurred more than 2.5 km from the juveniles were recorded. Arboreal mammals and birds dominated the Owls' diet. Low prey availability is suggested as being responsible for the single successful breeding event recorded in four nesting seasons.