890 resultados para Outdoor thermal comfort
Resumo:
During the last several decades, the quality of natural resources and their services have been exposed to significant degradation from increased urban populations combined with the sprawl of settlements, development of transportation networks and industrial activities (Dorsey, 2003; Pauleit et al., 2005). As a result of this environmental degradation, a sustainable framework for urban development is required to provide the resilience of natural resources and ecosystems. Sustainable urban development refers to the management of cities with adequate infrastructure to support the needs of its population for the present and future generations as well as maintain the sustainability of its ecosystems (UNEP/IETC, 2002; Yigitcanlar, 2010). One of the important strategic approaches for planning sustainable cities is „ecological planning‟. Ecological planning is a multi-dimensional concept that aims to preserve biodiversity richness and ecosystem productivity through the sustainable management of natural resources (Barnes et al., 2005). As stated by Baldwin (1985, p.4), ecological planning is the initiation and operation of activities to direct and control the acquisition, transformation, disruption and disposal of resources in a manner capable of sustaining human activities with a minimum disruption of ecosystem processes. Therefore, ecological planning is a powerful method for creating sustainable urban ecosystems. In order to explore the city as an ecosystem and investigate the interaction between the urban ecosystem and human activities, a holistic urban ecosystem sustainability assessment approach is required. Urban ecosystem sustainability assessment serves as a tool that helps policy and decision-makers in improving their actions towards sustainable urban development. There are several methods used in urban ecosystem sustainability assessment among which sustainability indicators and composite indices are the most commonly used tools for assessing the progress towards sustainable land use and urban management. Currently, a variety of composite indices are available to measure the sustainability at the local, national and international levels. However, the main conclusion drawn from the literature review is that they are too broad to be applied to assess local and micro level sustainability and no benchmark value for most of the indicators exists due to limited data availability and non-comparable data across countries. Mayer (2008, p. 280) advocates that by stating "as different as the indices may seem, many of them incorporate the same underlying data because of the small number of available sustainability datasets". Mori and Christodoulou (2011) also argue that this relative evaluation and comparison brings along biased assessments, as data only exists for some entities, which also means excluding many nations from evaluation and comparison. Thus, there is a need for developing an accurate and comprehensive micro-level urban ecosystem sustainability assessment method. In order to develop such a model, it is practical to adopt an approach that uses a method to utilise indicators for collecting data, designate certain threshold values or ranges, perform a comparative sustainability assessment via indices at the micro-level, and aggregate these assessment findings to the local level. Hereby, through this approach and model, it is possible to produce sufficient and reliable data to enable comparison at the local level, and provide useful results to inform the local planning, conservation and development decision-making process to secure sustainable ecosystems and urban futures. To advance research in this area, this study investigated the environmental impacts of an existing urban context by using a composite index with an aim to identify the interaction between urban ecosystems and human activities in the context of environmental sustainability. In this respect, this study developed a new comprehensive urban ecosystem sustainability assessment tool entitled the „Micro-level Urban-ecosystem Sustainability IndeX‟ (MUSIX). The MUSIX model is an indicator-based indexing model that investigates the factors affecting urban sustainability in a local context. The model outputs provide local and micro-level sustainability reporting guidance to help policy-making concerning environmental issues. A multi-method research approach, which is based on both quantitative analysis and qualitative analysis, was employed in the construction of the MUSIX model. First, a qualitative research was conducted through an interpretive and critical literature review in developing a theoretical framework and indicator selection. Afterwards, a quantitative research was conducted through statistical and spatial analyses in data collection, processing and model application. The MUSIX model was tested in four pilot study sites selected from the Gold Coast City, Queensland, Australia. The model results detected the sustainability performance of current urban settings referring to six main issues of urban development: (1) hydrology, (2) ecology, (3) pollution, (4) location, (5) design, and; (6) efficiency. For each category, a set of core indicators was assigned which are intended to: (1) benchmark the current situation, strengths and weaknesses, (2) evaluate the efficiency of implemented plans, and; (3) measure the progress towards sustainable development. While the indicator set of the model provided specific information about the environmental impacts in the area at the parcel scale, the composite index score provided general information about the sustainability of the area at the neighbourhood scale. Finally, in light of the model findings, integrated ecological planning strategies were developed to guide the preparation and assessment of development and local area plans in conjunction with the Gold Coast Planning Scheme, which establishes regulatory provisions to achieve ecological sustainability through the formulation of place codes, development codes, constraint codes and other assessment criteria that provide guidance for best practice development solutions. These relevant strategies can be summarised as follows: • Establishing hydrological conservation through sustainable stormwater management in order to preserve the Earth’s water cycle and aquatic ecosystems; • Providing ecological conservation through sustainable ecosystem management in order to protect biological diversity and maintain the integrity of natural ecosystems; • Improving environmental quality through developing pollution prevention regulations and policies in order to promote high quality water resources, clean air and enhanced ecosystem health; • Creating sustainable mobility and accessibility through designing better local services and walkable neighbourhoods in order to promote safe environments and healthy communities; • Sustainable design of urban environment through climate responsive design in order to increase the efficient use of solar energy to provide thermal comfort, and; • Use of renewable resources through creating efficient communities in order to provide long-term management of natural resources for the sustainability of future generations.
Resumo:
Climate change is leading to an increased frequency and severity of heat waves. Spells of several consecutive days of unusually high temperatures have led to increased mortality rates for the more vulnerable in the community. The problem is compounded by the escalating energy costs and increasing peak electrical demand as people become more reliant on air conditioning. Domestic air conditioning is the primary determinant of peak power demand which has been a major driver of higher electricity costs. This report presents the findings of multidisciplinary research which develops a national framework to evaluate the potential impacts of heat waves. It presents a technical, social and economic approach to adapt Australian residential buildings to ameliorate the impact of heat waves in the community and reduce the risk of its adverse outcomes. Through the development of a methodology for estimating the impact of global warming on key weather parameters in 2030 and 2050, it is possible to re-evaluate the size and anticipated energy consumption of air conditioners in future years for various climate zones in Australia. Over the coming decades it is likely that mainland Australia will require more cooling than heating. While in some parts the total electricity usage for heating and cooling may remain unchanged, there is an overall significant increase in peak electricity demand, likely to further drive electricity prices. Through monitoring groups of households in South Australia, New South Wales and Queensland, the impact of heat waves on both thermal comfort sensation and energy consumption for air conditioning has been evaluated. The results show that households are likely to be able to tolerate slightly increased temperature levels indoors during periods of high outside temperatures. The research identified that household electricity costs are likely to rise above what is currently projected due to the impact of climate change. Through a number of regulatory changes to both household design and air conditioners, this impact can be minimised. A number of proposed retrofit and design measures are provided, which can readily reduce electricity usage for cooling at minimal cost to the household. Using a number of social research instruments, it is evident that households are willing to change behaviour rather than to spend money. Those on lower income and elderly individuals are the least able to afford the use of air conditioning and should be a priority for interventions and assistance. Increasing community awareness of cost effective strategies to manage comfort and health during heat waves is a high priority recommended action. Overall, the research showed that a combined approach including behaviour change, dwelling modification and improved air conditioner selection can readily adapt Australian households to the impact of heat waves, reducing the risk of heat related deaths and household energy costs.
Resumo:
Background Women undergoing Cesarean Section (CS) are vulnerable to the adverse effects associated with perioperative core temperature drop, in part due to the tendency for CS to be performed under neuraxial anesthesia, blood and fluid loss, and vasodilation. Inadvertent perioperative hypothermia (IPH) is a common condition that affects patients undergoing surgery of all specialties and is detrimental to all age groups, including neonates. Previous systematic reviews on IPH prevention largely focus on either adult or all ages populations, and have mainly overlooked pregnant or CS patients as a distinct group. Not all recommendations made by systematic reviews targeting all adult patients may be transferable to CS patients. Alternative, effective methods for preventing or managing hypothermia in this group would be valuable. Objectives To synthesize the best available evidence in relation to preventing and/or treating hypothermia in mothers after CS surgery. Types of participants Adult patients over the age of 18 years, of any ethnic background, with or without co-morbidities, undergoing any mode of anesthesia for any type of CS (emergency or planned) at healthcare facilities who have received interventions to limit or manage perioperative core heat loss were included. Types of intervention(s) Active or passive warming methods versus usual care or placebo, that aim to limit or manage core heat loss as applied to women undergoing CS were included. Types of studies Randomized controlled trials (RCTs) that met the inclusion criteria, with reduction of perioperative hypothermia a primary or secondary outcome were considered. Types of outcomes Primary outcome: maternal core temperature measured during the preoperative, intraoperative and postoperative phases of care Secondary outcomes: newborn core temperature at birth, umbilical pH obtained immediately after birth, Apgar scores, length of Post Anesthetic Care Unit (PACU) stay, maternal thermal comfort. Search strategy A comprehensive search was undertaken of the following databases from their inception until May 2012: ProQuest, Web of Science, Scopus, Dissertation and Theses PQDT (via ProQuest), Current Contents, CENTRAL, Mednar, OpenGrey, Clinical Trials. There were no language restrictions. Methodological quality Retrieved papers were assessed for methodological quality by two independent reviewers prior to inclusion using JBI software. Disagreements were resolved via consultation with the third reviewer. An assessment of quality of the included papers was also made in relation to five key quality factors. Data collection Two independent reviewers extracted data from the included papers using a previously piloted customized data extraction tool. Results 12 studies with a combined total of 719 participants were included. Three broad intervention groups were identified; intravenous (IV) fluid warming, warming devices, leg wrapping. IV fluid warming, whether administered intraoperatively or preoperatively, was found to be effective at maintaining maternal (but not neonatal) temperature and preventing shivering, but does not improve thermal comfort. The effectiveness of IV fluid warming on Apgar scores and umbilical pH remains unclear. Warming devices, including forced air warming and under body carbon polymer mattresses, were effective at preventing hypothermia and reduced shivering, however were most effective if applied preoperatively. The effectiveness of warming devices to improve thermal comfort remains unclear. Preoperative forced air warming appears to aid maintenance of neonatal temperature, while intraoperative forced air warming does not. Forced air warming was not effective at improving Apgar scores and the effects for umbilical pH remain unclear. Conclusions Intravenous fluid warming, by any method, improves maternal temperature and reduces shivering for women undergoing CS. Preoperative body warming devices also improve maternal temperature, in addition to reducing shivering.
Resumo:
A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.
Resumo:
Cryotherapy is currently used in various clinical, rehabilitative, and sporting settings. However, very little is known regarding the impact of cooling on the microcirculatory response. Objectives: The present study sought to examine the influence of two commonly employed modalities of cryotherapy, whole body cryotherapy (WBC; -110°C) and cold water immersion(CWI; 8±1°C), on skin microcirculation in the mid- thigh region. Methods: The skin area examined was a 3 × 3 cm located between the most anterior aspect of the inguinal fold and the patella. Following 10 minutes of rest, 5 healthy, active males were exposed to either WBC for 3 minutes or CWI for 5 minutes in a randomised order. Volunteers lay supine for five minutes after treatment, in order to monitor the variation of red blood cell (RBC) concentration in the region of interest for a duration of 40 minutes. Microcirculation response was assessed using a non-invasive, portable instrument known as a Tissue Viability imaging system. After a minimum of seven days, the protocol was repeated. Subjective assessment of the volunteer’s thermal comfort and thermal sensation was also recorded. Results: RBC was altered following exposure to both WBC and CWI but appeared to stabilise approximately 35 minutes after treatments. Both WBC and CWI affected thermal sensation (p < 0.05); however no betweengroup differences in thermal comfort or sensation were recorded (p > 0.05). Conclusions: As both WBC and CWI altered RBC, further study is necessary to examine the mechanism for this alteration during whole body cooling.
Resumo:
This research was commissioned by Metecno Pty Ltd, trading as Bondor®. The InsulLiving house was designed and constructed by Bondor®. The house instrumentation (electricity circuits, indoor environment, weather station) was provided by Bondor and supplied and installed by independent contractors. This report contains analysis of data collected from the InsulLiving house at Burpengary during 1 year of occupancy by a family of four for the period 1 April 2012 – 31 March 2013. The data shows a daily average electricity consumption 48% less than the regional average. The analysis confirms that the 9 star house performed thermally slightly better than the simulated performance. The home was 'near zero energy', with its modest 2.1kW solar power system meeting all of the needs for space heating and cooling, lighting and most water heating.
Resumo:
The built environment has a profound impact on our natural environment, economy, health and productivity. As the majority of the people spent most of their time inside buildings, the environment in which they perform their daily activities will have an impact on their health and productivity. Studies have been conducted about the negative impacts of presence of non-favorable conditions to human health and well being. The term "Sick Building Syndrome" (SBS) is used to describe situations in which building occupants experience acute health and comfort problems that appear to be linked to their time spent in a building. Sustainable infrastructure rating systems have requirements intended to improve occupant productivity and health.While the impact of Sustainable Infrastructure in energy consumption and waste/water reduction can be measured using available tools, the impact on productivity remained as an assumption that is not clearly measured. The purpose of this research is to develop a framework to assess whether the impacts of the incorporation of features intended to improve occupants’ performance and health such as: increased ventilation, lightning and thermal comfort serve their intended purpose.
Resumo:
This was a comparative study of the possibility of a net zero energy house in Queensland, Australia. It examines the actual energy use and thermal comfort conditions of an occupied Brisbane home and compares performance with the 10 star scale rating scheme for Australian residential buildings. An adaptive comfort psychometric chart was developed for this analysis. The house's capacity for the use of the natural ventilation was studied by CFD modelling. This study showed that the house succeeded in achieving the definition of net zero energy on an annual and monthly basis for lighting, cooking and space heating / cooling and for 70% of days for lighting, hot water and cooking services.
Resumo:
This study examined the potential for apartment living to become more socially and environmentally acceptable in Australian society generally, and in subtropical cities particularly. Resolution of incongruities between residents' preferred attributes and other stakeholders' main interests has important implications for reshaping lifestyle expectations and design practice as society moves toward a post-carbon future.
Resumo:
This study investigated the cool roof technology effects on annual energy saving of a large one-storey commercial building in Queensland, Australia. A computer model of the case study was developed using commercial software by using the appropriate geometrical and thermal building specifications. Field study data were used to validate the model. The model was then used to extend the investigation to other cities in various Australian climate zones. The results of this research show that significant energy savings can be obtained using cool roof technology, particularly in warm, sunny climates, and the thesis can contribute to provide a guideline for application of cool roof technology to single-storey commercial building throughout Australia.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
This paper describes the design and erection of a climate-responsive Building Integrated Photovoltaic (BIPV) structure in Bangalore, (12.58 N, 77.38 E) in the state of Karnataka, India. Building Integrated Photovoltaics integrate solar panels as part of a building structure (roofs and walls) with an aim to achieve self-sufficiency in the operation and occupant-comfort energy requirements. A joint collaboration between the Centre for Sustainable Technologies, Indian Institute of Science (IISc) and Bharat Heavy Electricals Limited (BHEL) is setting up a 70,000 US$ facility for research in BIPV structures. The structure utilizes low energy building materials like Stabilized Mud Blocks (SMB) integrated with a PV roof. Numerous challenges were overcome in the design of the BIPV roof including mechanisms for natural thermal comfort in response to Bangalore's climatic conditions. The paper presents the challenges overcome in the design and construction of a low energy, climate-responsive BIPV structure.
Resumo:
Aim and objectives To identify the prevalence that temperature reduced by more than 1°C from pre to post-procedure in a sample of non-anaesthetised patients undergoing procedures in a cardiac catheterisation laboratory. Background Advances in medical technology are minimising the invasiveness of diagnostic tests and treatments for disease, which is correspondingly increasing the number of medical procedures performed without sedation or anaesthesia. Procedural areas in which medical procedures are performed without anaesthesia are typically kept at a cool temperature for staff comfort. As such, there is a need to inform nursing practices in regard to the thermal management of non-anaesthetised patients undergoing procedures in surgical or procedural environments. Design Single-site observational study Methods Patients were included if they had undergone an elective procedure without sedation or anaesthesia in a cardiac catheterisation laboratory. Ambient room temperature was maintained between 18°C and 20°C. Passive warming with heated cotton blankets was applied. Nurses measured body temperature and thermal comfort before and after 342 procedures. Results Mean change in temperature was -0.08°C (Standard deviation 0.43). The reduction in temperature was more than 1°C after 11 procedures (3.2%). One patient whose temperature had reduced more than 1°C after their procedure reported thermal discomfort. A total of 12 patients were observed to be shivering post-procedure (3.6%). No demographic or clinical characteristics were associated with reduction in temperature of more than 1°C from pre to post-procedure. Conclusions Significant reduction in body temperature was rare in our sample of non-anaesthetised patients. Relevance to clinical practice Similar results would likely be found in other procedural contexts during procedures conducted in settings with comparable room temperatures where passive warming can also be applied with limited skin exposure.
Resumo:
The performance of a building integrated photovoltaic system (BIPV) has to be commendable, not only on the electrical front but also on the thermal comfort front, thereby fulfilling the true responsibility of an energy providing shelter. Given the low thermal mass of BIPV systems, unintended and undesired outcomes of harnessing solar energy - such as heat gain into the building, especially in tropical regions - have to be adequately addressed. Cell (module) temperature is one critical factor that affects both the electrical and the thermal performance of such installations. The current paper discusses the impact of cell (module) temperature on both the electrical efficiency and thermal comfort by investigating the holistic performance of one such system (5.25 kW(p)) installed at the Centre for Sustainable Technologies in the Indian Institute of Science, Bangalore. Some recommendations (passive techniques) for improving the performance and making BIPV structures thermally comfortable have been listed out. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The function of a building is to ensure safety and thermal comfort for healthy living conditions. Buildings primarily comprise an envelope, which acts as an interface separating the external environment from the indoors environment. The building envelope is primarily responsible for regulating indoor thermal comfort in response to external climatic conditions. It usually comprises a configuration of building materials to thus far provide requisite structural performance. However, studies into building-envelope configurations to provide a particular thermal performance are limited. As the building envelope is exposed to the external environment there will be heat and moisture transfer to the indoor environment through it. The overall phenomenon of heat and moisture transfer depends on the microstructure and configuration within the building material. Further, thermal property of a material is generally dependent on its microstructure, which comprises a network of pores and particles arranged in a definite structure. Thermal behaviour of a building material thus depends on the thermal conductivities of the solid particles, pore micro-structure and its constituent fluid (air and/or moisture). The thermal response of a building envelope is determined by the thermal characteristics of the individual building materials and its configuration. Understanding the heat transfer influenced by the complex networks of pores and particles is a relatively new study in the area of building climatic-response. The current study reviews the heat-transfer mechanisms that determine the thermal performance of a building material attributed to its micro-structure. A theoretical basis for the same is being evolved and its relevance in regulating heat-transfer through building envelopes, walls in particular, is reviewed in this paper. (C) 2014 N.C. Balaji. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).