845 resultados para Other nonlinear optical materials
Resumo:
This feature article highlights work from the authors' laboratories on the various kinds of oxide optical materials, mainly luminescence and pigment materials with different forms (powder, core-shell structures, thin film and patterning) prepared by the Pechini-type sol-gel (PSG) process. The PSG process, which uses the common metal salts (nitrates, acetates, chlorides, etc.) as precursors and citric acid (CA) as chelating ligands of metal ions and polyhydroxy alcohol (such as ethylene glycol or poly ethylene glycol) as a cross-linking agent to form a polymeric resin on molecular level, reduces segregation of particular metal ions and ensures compositional homogeneity. This process can overcome most of the difficulties and disadvantages that frequently occur in the alkoxides based sol-gel process.
Resumo:
An ultrathin composite film containing both polyoxometalate anion [PMo12O40](3-) ( PMo12) and a planar binuclear phthalocyanine, bi-CoPc, has been prepared by the electrostatic layer-by-layer self-assembly method. UV-vis measurements revealed regular film growth with each four-layer {PMo12/bi-CoPc/PSS/PAH} adsorption. The lm structure was characterized by small-angle X-ray reflectivity measurements, X-ray photoelectron spectra, and AFM images. The nanothick film shows a third-order nonlinear optical response of chi((3)) = 4.21 x 10(-12) esu. Experimental investigations also indicate that the combination of polyoxometalate anions [PMo12O40](3-) with the phthalocyanine bi-CoPc in multilayer films can enhance the third-order NLO susceptibility and modify the third-order NLO absorption of bi-CoPc.
Resumo:
K(4)Ln(2)(CO3)(3)F-4 (Ln=Pr, Nd, Sm, Eu, Gd) is a special type of frequency doubling compound, whose crystal structure exhibits a scarcity of fluorine ions. This leads to two different coordination polyhedrons in the general position of K(2) atoms: [K(2)O6F(1)(2)F(2)] and [K(21)O6F(1)(2)] in a 2/1 ratio. The chemical bonding structures of all constituent atoms of the compound K4Gd2(CO3)(3)F-4 (KGCOF) are comprehensively studied; moreover, the relationship between the chemical bonding structure and the nonlinear optical (NLO) properties is investigated from the chemical bond viewpoint. The theoretical prediction of the NLO tensor coefficient d(11) of KGCOF is in agreement with experimental observation. Theoretical analyses show that the nonlinearity of this crystal type mainly originates from K-O bonds. In addition, the correlation between the NLO tensor d(11) and the refractive index n(0) of KGCOF is discussed. (C) 2000 American Institute of Physics. [S0021-8979(00)07506-X].
Resumo:
The second-order nonlinear optical tensor coefficients of both KTiOPO4 (KTP) and KTiOAsO4 (KTA) are calculated from the chemical bond viewpoint. All constituent chemical bonds of both crystals are considered, and contributions of each type of bond to the total linearity and nonlinearity are determined. Calculated results agree satisfactorily with experimental data in both signs and numerical values. The calculation shows that though TiO6 groups and P(1)O-4 or As(1)O-4 groups have relatively larger linear contributions, they can only produce an advantageous environment for KOx (x = 8, 9) groups and P(2)O-4 or As(2)O-4 groups in nonlinear optical contributions. The origin of nonlinearity of KTP family crystals comes from the KOx (x = 8, 9) and P(2)O-4 groups in their crystal structures. Furthermore, the difference in optical nonlinearities of KTP type crystals is analyzed, based on the detailed calculation of nonlinearities of both KTP and KTA. (C) 1999 Academic Press.
Resumo:
A new side chain liquid crystalline poly[4-(methacryloxy)hexanoloxy-4'-benzyloxy biphenyl] was synthesized. The phase behavior of the monomer and homopolymer was studied. The monomer shows a smectic B phase, while the homopolymer shows a nematic phase. The nonmesogenic nonlinear optical group was introduced to synthesize a series of side chain liquid crystalline copolymers which also show a nematic phase. Owing to the liquid crystallinity of the copolymer has been the orientational stability improved, down the relax of the orientation slowed and the nonlinear optical properties enhanced.
Resumo:
From the chemical bond viewpoint, the second-order nonlinear optical (NLO) tensor coefficients of some Re-2(MoO4)(3) (ReMO)-type tare earth molybdates, with Re = Pr, Nd, Sm, Eu, Gd, Tb and Dy, have been calculated by using the chemical bond theory of complex crystals and the modified bond charge model. All kinds of constituent chemical bonds are considered in the calculation. The major part of the NLO properties of these ReMO crystals is found from the ReO7 groups. The NLO coefficients of these ReMO crystals decrease with Re from Pr to Dy. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Linear and nonlinear optical (NLO) properties of KNbO3 in various phases are calculated from their crystal structures. Nonlinear optical tensor coefficients are found to be very sensitive to the atomic geometry, changing as much as 85% between the ferroelectric tetragonal and rhombohedral phases. The predicted principal refractive indices are also found to be sensitive to their structural changes. In the tetragonal phase KNbO3 has the largest NLO responses, in the orthorhombic phase KNbO3 has the relative larger NLO coefficients, and in the rhombohedral structure KNbO3 has the large and homogeneous NLO properties. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tenser coefficients of LiXO3 (X = I; Nb or Ta) type complex crystals have been calculated using the chemical bond theory of complex crystals. Contributions of each type of bond to the total second-order NLO coefficient d(ij) and the linear susceptibility X are quantitatively determined. All tensor values thus calculated are in good agreement with experimental data. The Li-O bonds are found to be an important group in the contributions to the total NLO tenser coefficient, especially for those in LiNbO3 and LiTaO3. The importance of Li-O bonds depends on the environment of Li atom in these crystals.
Resumo:
This work considers the isomorphous optically active crystals NaClO3 and NaBrO3. The connection between their second-order nonlinear optical (NLO) responses and chemical bond structures is established, starting from the experimental optical activities. The calculation reproduces the well-known experimental fact that crystals of NaClO3 and NaBrO3 with similar structures have different signs of optical rotation and of second harmonic generation (SHG). Unlike previous bond charge models, the method may include more than one type of bond in the calculation, and therefore may be used to study the optical activity and nonlinear optical properties of more general crystals. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The second-order nonlinear optical (NLO) tensor coefficients of KNdP4O12 (KNP) are theoretically predicted from its crystal structural data, by using the chemical bond theory of complex crystals and the modified bond charge model. Linear and nonlinear optical contributions of each type of bond to the total linearity (chi) and nonlinearity (d(ij)) of KNP are quantitatively determined. The structure-property relationship of KNP is systematically investigated, from the chemical bond viewpoint. Based on the discussion of its structural modifications, we point out that NLO properties of I(NP can be improved effectively using the doping method. Theoretical predictions show KNP to be a promising: self-frequency-doubling laser material.
Resumo:
Second order nonlinear optical (NLO) tensor coefficients of LiXO3 (X = I, Nb, Ta) type crystals have been evaluated on the basis of the dielectric theory of complex crystals and the modified bond charge model. The current method is capable of calculating single bond contributions to the total second order NLO susceptibility. The tenser values thus calculated agree well with experimental data. By introducing the subformula equation and the concept of the effective charge of one valence electron, we are able to successfully treat such complex crystals as LiXO3 type compounds. In addition, the bond charge expression is modified to a more reasonable form for complex crystals. (C) 1998 Elsevier Science B.V.
Resumo:
From the chemical bond viewpoint, second-order nonlinear optical (NLO) tensor coefficients of LiNbO3 have been investigated. The single-bond contributions to the second-order NLO susceptibility and the linear susceptibility were determined. The tensor values thus calculated are in good agreement with experimental data. Based on theoretical results of LiNbO3 with Li/Nb = 1, we also have calculated linear and nonlinear optical properties of nonstoichiometric samples with Li/Nb < 1. In the calculation, we find that the Li-O bond is an important type of chemical bond in these LiNbO3 samples, which have large NLO contributions to the total nonlinearities. The refractive indices and second-order NLO tensor coefficients have been determined as a function of the stoichiometry.
Resumo:
On the basis of AM1 and INDO/CI methods, we devise the program for the calculation of nonlinear second-order optical susceptibilities beta(ijk) and perform systematic theoretical studies on the nonlinear optical second-order properties of azobenzene series molecules, i. e. on the basis of [GRAPHICS] we induced different donors on the left side of phenyl ring, and different accepters on the right side of phenyl ring, and examined the rule of beta variation. The regularity summarized from the calculated results has been explained micromechanically. Finally, a molecule having a big nonlinear second-order optical susceptibility has been designed.
Resumo:
For the first time, we present the calculation of the nonlinear optical coefficient of the NdAl3(BO3)(4) (NAB) crystal from a systematic and quantitative standpoint. Based on the dielectric theory of complex crystals and the Levine bond charge model, the method of calculation of the second-order nonlinear optical tensor coefficients of complex crystals has been given systematically. The chemical bond parameters and linear and nonlinear susceptibilities of the NAB crystal have been calculated in detail, and the calculated value of d(11)(NAB) is -5.81 x 10(-9) esu, which agrees with the measured value of 4.06 x 10(-9) esu.
Resumo:
Synthesis and characterization of a diamino dihydroxyl azo compound were reported, The crosslinking reaction process of the diamino dihydroxyl azo compound with the biuret of hexamethylene diisocyanate was studied by FTIR, The glass transition temperatures of crosslinked polymers were measured by DSC, The orientation and oriented stability of crosslinked and poled polymers were studied by UV-Vis spectra.