984 resultados para Osteogenic growth peptide
Resumo:
SBTX, a novel toxin from soybean, was purified by ammonium sulfate fractionation followed by chromatographic steps DEAE-Cellulose, CM-Sepharose and Superdex 200 HR fast-protein liquid chromatography (FPLC). Lethality of SBTX to mice (LD50 5.6 mg/kg) was used as parameter in the purification steps. SBTX is a 44-kDa basic glycoprotein composed of two polypeptide chains (27 and 17 kDa) linked by a disulfide bond. The N-terminal sequences of the 44 and 27 kDa chains were identical (ADPTFGFTPLGLSEKANLQIMKAYD), differing from that of 17 kDa (PNPKVFFDMTIGGQSAGRIVMEEYA). SBTX contains high levels of Glx, Ala, Asx, Gly and Lys and showed maximum absorption at 280 nm, epsilon(1 cm) (1%) of 6.3, and fluorescence emission in the 290-450nm range upon excitation at 280nm. The secondary structure content was 35% alpha-helix, 13% beta-strand and beta-sheet, 27% beta-turn, 25% unordered, and 1% aromatic residues. Immunological assays showed that SBTX was related to other toxic proteins, such as soyatoxin and canatoxin, and cross-reacted weekly with soybean trypsin inhibitor and agglutinin, but it was devoid of protease-inhibitory and hemagglutinating activities. The inhibitory effect of SBTX on growth of Cercospora sojina, fungus causing frogeye leaf spot in soybeans, was observed at 50 mu g/ml, concentration 112 times lesser than that found to be lethal to mice. This effect on phytopathogenic fungus is a potential attribute for the development of transgenic plants with enhanced resistance to pathogens. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Disease, injury, and age problems compromise human quality of life and continuously motivate the search for new and more efficacious therapeutic approaches. The field of Tissue Regeneration and Engineering has greatly evolved over the last years, mainly due to the combination of the important advances verified in Biomaterials Science and Engineering with those of Cell and Molecular Biology. In particular, a new and promising area arose – Nanomedicine – that takes advantage of the extremely small size and especial chemical and physical properties of Nanomaterials, offering powerful tools for health improvement. Research on Stem Cells, the self-renewing progenitors of body tissues, is also challenging to the medical and scientific communities, being expectable the appearance of new and exciting stem cell-based therapies in the next years. The control of cell behavior (namely, of cell proliferation and differentiation) is of key importance in devising strategies for Tissue Regeneration and Engineering. Cytokines, growth factors, transcription factors and other signaling molecules, most of them proteins, have been identified and found to regulate and support tissue development and regeneration. However, the application of these molecules in long-term regenerative processes requires their continuous presence at high concentrations as they usually present short half-lives at physiological conditions and may be rapidly cleared from the body. Alternatively, genes encoding such proteins can be introduced inside cells and be expressed using cell’s machinery, allowing an extended and more sustained production of the protein of interest (gene therapy). Genetic engineering of stem cells is particularly attractive because of their self-renewal capability and differentiation potential. For Tissue Regeneration and Engineering purposes, the patient’s own stem cells can be genetically engineered in vitro and, after, introduced in the body (with or without a scaffold) where they will not only modulate the behavior of native cells (stem cell-mediated gene therapy), but also directly participate in tissue repair. Cells can be genetically engineered using viral and non-viral systems. Viruses, as a result of millions of years of evolution, are very effective for the delivery of genes in several types of cells, including cells from primary sources. However, the risks associated with their use (like infection and immunogenic reactions) are driving the search for non-viral systems that will efficiently deliver genetic material into cells. Among them, chemical methods that are promising and being investigated use cationic molecules as carriers for DNA. In this case, gene delivery and gene expression level remain relatively low when primary cells are used. The main goal of this thesis was to develop and assess the in vitro potential of polyamidoamine (PAMAM) dendrimers based carriers to deliver genes to mesenchymal stem cells (MSCs). PAMAM dendrimers are monodispersive, hyperbranched and nanospherical molecules presenting unique characteristics that make them very attractive vehicles for both drug and gene delivery. Although they have been explored for gene delivery in a wide range of cell lines, the interaction and the usefulness of these molecules in the delivery of genes to MSCs remains a field to be explored. Adult MSCs were chosen for the studies due to their potential biomedical applications (they are considered multipotent cells) and because they present several advantages over embryonic stem cells, such as easy accessibility and the inexistence of ethical restrictions to their use. This thesis is divided in 5 interconnected chapters. Chapter I provides an overview of the current literature concerning the various non-viral systems investigated for gene delivery in MSCs. Attention is devoted to physical methods, as well as to chemical methods that make use of polymers (natural and synthetic), liposomes, and inorganic nanoparticles as gene delivery vectors. Also, it summarizes the current applications of genetically engineered mesenchymal stem cells using non-viral systems in regenerative medicine, with special focus on bone tissue regeneration. In Chapter II, the potential of native PAMAM dendrimers with amine termini to transfect MSCs is evaluated. The level of transfection achieved with the dendrimers is, in a first step, studied using a plasmid DNA (pDNA) encoding for the β-galactosidase reporter gene. The effect of dendrimer’s generation, cell passage number, and N:P ratio (where N= number of primary amines in the dendrimer; P= number of phosphate groups in the pDNA backbone) on the level of transfection is evaluated, being the values always very low. In a second step, a pDNA encoding for bone morphogenetic protein-2, a protein that is known for its role in MSCs proliferation and differentiation, is used. The BMP-2 content produced by transfected cells is evaluated by an ELISA assay and its effect on the osteogenic markers is analyzed through several classical assays including alkaline phosphatase activity (an early marker of osteogenesis), osteocalcin production, calcium deposition and mineralized nodules formation (late osteogenesis markers). Results show that a low transfection level is enough to induce in vitro osteogenic differentiation in MSCs. Next, from Chapter III to Chapter V, studies are shown where several strategies are adopted to change the interaction of PAMAM dendrimers with MSCs cell membrane and, as a consequence, to enhance the levels of gene delivery. In Chapter III, generations 5 and 6 of PAMAM dendrimers are surface functionalized with arginine-glycine-aspartic acid (RGD) containing peptides – experiments with dendrimers conjugated to 4, 8 and 16 RGD units were performed. The underlying concept is that by including the RGD integrin-binding motif in the design of the vectors and by forming RGD clusters, the level of transfection will increase as MSCs highly express integrins at their surface. Results show that cellular uptake of functionalized dendrimers and gene expression is enhanced in comparison with the native dendrimers. Furthermore, gene expression is dependent on both the electrostatic interaction established between the dendrimer moiety and the cell surface and the nanocluster RGD density. In Chapter IV, a new family of gene delivery vectors is synthesized consisting of a PAMAM dendrimer (generation 5) core randomly linked at the periphery to alkyl hydrophobic chains that vary in length and number. Herein, the idea is to take advantage of both the cationic nature of the dendrimer and the capacity of lipids to interact with biological membranes. These new vectors show a remarkable capacity for internalizing pDNA, being this effect positively correlated with the –CH2– content present in the hydrophobic corona. Gene expression is also greatly enhanced using the new vectors but, in this case, the higher efficiency is shown by the vectors containing the smallest hydrophobic chains. Finally, chapter V reports the synthesis, characterization and evaluation of novel gene delivery vectors based on PAMAM dendrimers (generation 5) conjugated to peptides with high affinity for MSCs membrane binding - for comparison, experiments are also done with a peptide with low affinity binding properties. These systems present low cytotoxicity and transfection efficiencies superior to those of native dendrimers and partially degraded dendrimers (Superfect®, a commercial product). Furthermore, with this biomimetic approach, the process of gene delivery is shown to be cell surface receptor-mediated. Overall, results show the potential of PAMAM dendrimers to be used, as such or modified, in Tissue Regeneration and Engineering. To our knowledge, this is the first time that PAMAM dendrimers are studied as gene delivery vehicles in this context and using, as target, a cell type with clinical relevancy. It is shown that the cationic nature of PAMAM dendrimers with amine termini can be synergistically combined with surface engineering approaches, which will ultimately result in suitable interactions with the cytoplasmic membrane and enhanced pDNA cellular entry and gene expression. Nevertheless, the quantity of pDNA detected inside cell nucleus is always very small when compared with the bigger amount reaching cytoplasm (accumulation of pDNA is evident in the perinuclear region), suggesting that the main barrier to transfection is the nuclear membrane. Future work can then be envisaged based on the versatility of these systems as biomedical molecular materials, such as the conjugation of PAMAM dendrimers to molecules able to bind nuclear membrane receptors and to promote nuclear translocation.
Resumo:
Arginine was hypothesized to be a model compound in the present study on molecular forms of indispensable amino acid (IAA) dietary supplementation. Juvenile South American pacu (Piaractus mesopotamicus) were fed diets containing arginine in a protein base (casein-wheat gluten or casein-gelatin), or the casein-wheat gluten base supplemented with dipeptide or free arginine at two levels (5 and 10 g kg(-1)). Growth and protein efficiency ratios were significantly affected by diets, but not by arginine molecular form. Three free dispensable amino acids (DAA) and four IAA in plasma were affected by diet, but plasma arginine concentrations did not differ. Plasma urea concentrations, being very low in the pacu, and hepatic arginase activities, were not affected by diet (P = 0.10-0.11), but together with plasma ornithine, mirrored the growth data. Molecular form of arginine supplementation, free or dipeptide, significantly changed several free IAA (Phe, Leu, Ile, His) and urea, with a higher mean plasma concentration in dipeptide fed fish. The dietary treatments, or molecular form of the arginine supplementation, did not change proximate composition, except that calcium levels decreased with higher dietary arginine supplementation level. The present study indicates that dipeptides can provide IAA to pacu, and that arginine supplemented in this form is utilized as efficiently as in free form.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To investigate the alterations of glucose homeostasis and variables of the insulin-like growth factor-I (IGF- 1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg(-1) b.w.). Training program consisted of swimming 5 days week(-1), 1 h day(-1), during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF-1, and IGF binding protein-3(IGFBP-3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF-1 content. Diabetes decreased serum GH, IGF-1, IGFBP-3, liver glycogen, and cerebellum IGF-1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF-1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF-1 concentrations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Biomass and ethanol production by industrial Saccharomyces cerevisiae strains were strongly affected by the structural complexity of the nitrogen source during fermentation in media containing galactose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low galactose concentrations independent of nitrogen supplementation. At high sugar concentrations altered patterns of galactose utilisation were observed. Biomass accumulation and ethanol production depended on the nature of the nitrogen source and were different for baking and brewing ale and lager strains. Baking yeast showed improved galactose fermentation performance in the medium supplemented with casamino acids. High biomass production was observed with peptone and casamino acids for the ale brewing strain, however high ethanol production was observed only in the presence of casamino acids. Conversely, peptone was the nitrogen supplement that induced higher biomass and ethanol production for the lager brewing strain. Ammonium salts always induced poor yeast performance. The results with galactose differed from those obtained with glucose and maltose which indicated that supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, suggesting that sugar catabolite repression has a central role in yeast performance in a medium containing nitrogen sources with differing levels of structural complexity.
Resumo:
The structural complexity of the nitrogen source strongly affects both biomass and ethanol production by industrial strains of Saccharomyces cerevisiae, during fermentation in media containing glucose or maltose, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Diauxie was observed at low glucose and maltose concentrations independent of nitrogen supplementation. At high sugar concentrations diauxie was not easily observed. and growth and ethanol production depended on the nature of the nitrogen source. This was different for baking and brewing ale and lager yeast strains. Sugar concentration had a strong effect on the shift from oxido-fermentative to oxidative metabolism. At low sugar concentrations, biomass production was similar under both peptone and casamino acid supplementation. Under casamino acid supplementation, the time for metabolic shift increased with the glucose concentration, together with a decrease in the biomass production. This drastic effect on glucose fermentation resulted in the extinction of the second growth phase, probably due to the loss of cell viability. Ammonium salts always induced poor yeast performance. In general, supplementation with a nitrogen source in the peptide form (peptone) was more positive for yeast metabolism, inducing higher biomass and ethanol production, and preserving yeast viability, in both glucose and maltose media, for baking and brewing ale and lager yeast strains. Determination of amino acid utilization showed that most free and peptide amino acids present, in peptone and casamino acids, were utilized by the yeast, suggesting that the results described in this work were not due to a nutritional status induced by nitrogen limitation.
Resumo:
The eukaryotic translation initiation factor 5A (eIF5A) undergoes a specific post-translational modification called hypusination. This modification is required for the functionality of this protein. The compound N1-guanyl-1,7-diaminoheptane (GC7) is a potent and selective inhibitor of deoxyhypusine synthase, which catalyses the first step of eIF5A hypusination process. In the present study, the effects of GC7 on cell death were investigated using two cell lines: melan-a murine melanocytes and Tm5 marine melanoma. In vitro treatment with GC7 increased by 3-fold the number of cells presenting DNA fragmentation in Tm5 cells. Exposure to GC7 also decreased viability to both cell lines. This study also describes, for the first time, the in vivo antitumour effect of GC7, as indicated by impaired melanoma growth in C57BL/6 mice. Copyright © 2006 John Wiley & Sons, Ltd.
Resumo:
The peptide LYS-[TRP6]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK- NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37 °C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL-1). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes. © 2012 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to identify immunoreactive neuropeptide Y (NPY) and calcitonin gene-related peptide (CGRP) neurons in the autonomic and sensory ganglia, specifically neurons that innervate the rat temporomandibular joint (TMJ). A possible variation between the percentages of these neurons in acute and chronic phases of carrageenan-induced arthritis was examined. Retrograde neuronal tracing was combined with indirect immunofluorescence to identify NPY-immuno-reactive (NPY-IR) and CGRP-immunoreactive (CGRP-IR) neurons that send nerve fibers to the normal and arthritic temporomandibular joint. In normal joints, NPY-IR neurons constitute 78 +/- 3%, 77 +/- 6% and 10 +/- 4% of double-labeled nucleated neuronal profile originated from the superior cervical, stellate and otic ganglia, respectively. These percentages in the sympathetic ganglia were significantly decreased in acute (58 +/- 2% for superior cervical ganglion and 58 +/- 8% for stellate ganglion) and chronic (60 +/- 2% for superior cervical ganglion and 59 +/- 15% for stellate ganglion) phases of arthritis, while in the otic ganglion these percentages were significantly increased to 19 +/- 5% and 13 +/- 3%, respectively. In the trigeminal ganglion, CGRP-IR neurons innervating the joint significantly increased from 31 +/- 3% in normal animals to 54 +/- 2% and 49 +/- 3% in the acute and chronic phases of arthritis, respectively. It can be concluded that NPY neurons that send nerve fibers to the rat temporomandibular joint are located mainly in the superior cervical, stellate and otic ganglia. Acute and chronic phases of carrageenan-induced arthritis lead to an increase in the percentage of NPY-IR parasympathetic and CGRP-IR sensory neurons and to a decrease in the percentage of NPY-IR sympathetic neurons related to TMJ innervation.
Resumo:
Background: The bone morphogenetic proteins (BMPs) belong to a unique group of proteins that includes the growth factor TGF-beta. BMPs play important roles in cell differentiation, cell proliferation, and inhibition of cell growth. They also participate in the maturation of several cell types, depending on the microenvironment and interactions with other regulatory factors. Depending on their concentration gradient, the BMPs can attract various types of cells and act as chemotactic, mitogenic, or differentiation agents. BMPs can interfere with cell proliferation and the formation of cartilage and bone. In addition, BMPs can induce the differentiation of mesenchymal progenitor cells into various cell types, including chondroblasts and osteoblasts. The aim of this study was to analyze the effects of treatment with rhBMP-2 on the proliferation of canine mesenchymal stem cells (cMSCs) and the tumor suppression properties of rhBMP-2 in canine osteocarcoma (OST) cells. Osteosarcoma cell lines were isolated from biopsies and excisions of animals with osteosarcoma and were characterized by the Laboratory of Biochemistry and Biophysics, Butantan Institute. The mesenchymal stem cells were derived from the bone marrow of canine fetuses (cMSCs) and belong to the University of Sao Paulo, College of Veterinary Medicine (FMVZ-USP) stem cell bank. After expansion, the cells were cultured in a 12-well Transwell system; cells were treated with bone marrow mesenchymal stem cells associated with rhBMP2. Expression of the intracytoplasmic and nuclear markers such as Caspase-3, Bax, Bad, Bcl-2, Ki-67, p53, Oct3/4, Nanog, Stro-1 were performed by flow citometry. Results: We evaluated the regenerative potential of in vitro treatment with rhBMP-2 and found that both osteogenic induction and tumor regression occur in stem cells from canine bone marrow. rhBMP-2 inhibits the proliferation capacity of OST cells by mechanisms of apoptosis and tumor suppression mediated by p53. Conclusion: We propose that rhBMP-2 has great therapeutic potential in bone marrow cells by serving as a tumor suppressor to increase p53 and the pro-apoptotic proteins Bad and Bax, as well as by increasing the activity of phosphorylated caspase 3. Study design: Canine bone marrow mesenchymal stem cells associated with rhBMP2 in canine osteosarcoma treatment: "in vitro" study