977 resultados para Oscillation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study illustrates the biennial oscillation in different ocean-atmosphere parameters associated with interannual variability of Indian summer monsoon rainfall.It also accounts the role of different processes like ENSO, IOD, QBO and ISO in the monsoon variability during the TBO years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRMM Microwave Imager (TMI) is reported to be a useful sensor to measure the atmospheric and oceanic parameters even in cloudy conditions. Vertically integrated specific humidity, Total Precipitable Water (TPW) retrieved from the water vapour absorption channel (22GHz.) along with 10m wind speed and rain rate derived from TMI is used to investigate the moisture variation over North Indian Ocean. Intraseasonal Oscillations (ISO) of TPW during the summer monsoon seasons 1998, 1999, and 2000 over North Indian Ocean is explored using wavelet analysis. The dominant waves in TPW during the monsoon periods and the differences in ISO over Arabian Sea and Bay of Bengal are investigated. The northward propagation of TPW anomaly and its coherence with the coastal rainfall is also studied. For the diagnostic study of heavy rainfall spells over the west coast, the intrusion of TPW over the North Arabian Sea is seen to be a useful tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-series measurements from a moored data buoy located in the Bay of Bengal captured signals of inertial oscillation forced by the September 1997 cyclone. The progressive vector diagram showed mean northeastward current with well-defined clockwise circulation. Spectral analysis exhibited inertial peak at 0.67 cpd with blue shift and high rotary coefficient of –0.99, which signifies strong circular inertial oscillation. The wind and SST also exhibited spectral peak at inertial band (0.69 cpd) with higher blue shift. The inertial amplitude of 148.8 cm/s corresponding to a wind stress of 0.99 N/m2 and spectral peak near the local inertial frequency (0.653 cpd) indicate that the transfer of momentum was high.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oscillations in the Atmospheric Boundary Layer (ABL) are important because the transport mechanism from the surface to the upper atmosphere is governed by the ABL characteristics. The study was carried out using wind and temperature data observed at surface, 925 hPa and 850 hPa levels over Cochin and the different frequencies embedded in the boundary layer parameters are identified by employing wavelet technique. Surface boundary layer characteristics over the monsoon region are closely linked to the upper layer monsoon features. In this perception it is important to study the various oscillations in the surface boundary layer and the layer above. It is found that the wind and temperature at different levels show oscillations in Quasi Biweekly Mode (QBM) and Intra Seasonal Oscillation (ISO) bands as observed in a typical monsoon system. Amplitude of the oscillation varies with height. The amplitude of the QBM periodicity is more in the surface levels but in the upper levels the amplitude of the ISO periodicity is more than that of the QBM. From this, it is obvious that the controlling mechanism of QBM band is surface parameters such as surface friction and that for ISO band is associated with the active-break cycles of monsoon system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tropospheric Biennial Oscillation (TBO), a major interannual variation phenomenon in the Indo-Pacific region, is the result of strong ocean-atmosphere coupling over the Asian-Australian monsoon area. Along with other meteorological and oceanographic parameters, the tropical circulation also exhibits interannual oscillations. Even though the TBO is the result of strong air–sea interaction, the circulation cells during TBO years are, as yet, not well understood. In the present study, an attempt has been made to understand the interannual variability of the mean meridional circulation and local monsoon circulation over south Asia in connection with the TBO. The stream function computed from the zonal mean meridional wind component of NCEP=NCAR reanalysis data for the years 1950–2003 is used to represent the meanmeridional circulation. Mean meridional mass transport in the topics reverses from a weak monsoon to a strong monsoon in the presence of ENSO, but in normal TBO yearsmean transport remains weak across the Northern Hemisphere. The meridional temperature gradient, which drives the mean meridional circulation, also shows no reversal during the normal TBO cycle. The local Hadley circulation over the monsoon area follows the TBO cycle with anomalous ascent (descent) in strong (weak) monsoon years. During normal TBO years, the Equatorial region and Indian monsoon areas exhibit opposite local Hadley circulation anomalies

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The North Atlantic Oscillation (NAO) is an important large-scale atmospheric circulation that influences the European countries climate. This study evaluated NAO impact in air quality in Porto Metropolitan Area (PMA), Portugal, for the period 2002-2006. NAO, air pollutants and meteorological data were statistically analyzed. All data were obtained from PMA Weather Station, PMA Air Quality Stations and NOAA analysis. Two statistical methods were applied in different time scale : principal component and correlation coefficient. Annual time scale, using multivariate analysis (PCA, principal component analysis), were applied in order to identified positive and significant association between air pollutants such as PM10, PM2.5, CO, NO and NO2, with NAO. On the other hand, the correlation coefficient using seasonal time scale were also applied to the same data. The results of PCA analysis present a general negative significant association between the total precipitation and NAO, in Factor 1 and 2 (explaining around 70% of the variance), presented in the years of 2002, 2004 and 2005. During the same years, some air pollutants (such as PM10, PM2.5, SO2, NOx and CO) present also a positive association with NAO. The O3 shows as well a positive association with NAP during 2002 and 2004, at 2nd Factor, explaining 30% of the variance. From the seasonal analysis using correlation coefficient, it was found significant correlation between PM10 (0.72., p<0.05, in 2002), PM2.5 (0 74, p<0.05, in 2004), and SO2 (0.78, p<0.01, in 2002) with NAO during March-December (no winter period) period. Significant associations between air pollutants and NAO were also verified in the winter period (December to April) mainly with ozone (2005, r=-0.55, p.<0.01). Once that human health and hospital morbidities may be affected by air pollution, the results suggest that NAO forecast can be an important tool to prevent them, in the Iberian Peninsula and specially Portugal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes the hypothesis that the low-frequency variability of the North Atlantic Oscillation (NAO) arises as a result of variations in the occurrence of upper-level Rossby wave–breaking events over the North Atlantic. These events lead to synoptic situations similar to midlatitude blocking that are referred to as high-latitude blocking episodes. A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently. A similar, but weaker, relationship exists between wave breaking over the Pacific and the west Pacific pattern. Evidence is given to support this hypothesis by using a two-dimensional potential-vorticity-based index to identify wave breaking at various latitudes. This is applied to Northern Hemisphere winter data from the 40-yr ECMWF Re-Analysis (ERA-40), and the events identified are then related to the NAO. Certain dynamical precursors are identified that appear to increase the likelihood of wave breaking. These suggest mechanisms by which variability in the tropical Pacific, and in the stratosphere, could affect the NAO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an idealized primitive equation model, we investigate how stratospheric conditions alter the development of baroclinic instability in the troposphere. Starting from the lifecycle paradigm of Thorncroft et al., we consider the evolution of baroclinic lifecycles resulting from the addition of a stratospheric jet to the LC1 initial condition. We find that the addition of the stratospheric jet yields a net surface geopotential height anomaly that strongly resembles the Arctic Oscillation. With the additional modification of the tropospheric winds to resemble the high-AO climatology, the surface response is amplified by a factor 10 and, though dominated by the tropospheric changes, shows similar sensitivity to the stratospheric conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of climate models to reproduce and predict land surface anomalies is an important but little-studied topic. In this study, an atmosphere and ocean assimilation scheme is used to determine whether HadCM3 can reproduce and predict snow water equivalent and soil moisture during the 1997–1998 El Nino Southern Oscillation event. Soil moisture is reproduced more successfully, though both snow and soil moisture show some predictability at 1- and 4-month lead times. This result suggests that land surface anomalies may be reasonably well initialized for climate model predictions and hydrological applications using atmospheric assimilation methods over a period of time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have argued that the autocorrelation of the winter North Atlantic Oscillation (NAO) index provides evidence of unusually persistent intraseasonal dynamics. We demonstrate that the autocorrelation on intraseasonal time-scales of 10–30 days is sensitive to the presence of interannual variability, part of which arises from the sampling of intraseasonal variability and the remainder of which we consider to be “externally forced”. Modelling the intraseasonal variability of the NAO as a red noise process we estimate, for winter, ~70% of the interannual variability is externally forced, whereas for summer sampling accounts for almost all of the interannual variability. Correcting for the externally forced interannual variability has a major impact on the autocorrelation function for winter. When externally forced interannual variability is taken into account the intrinsic persistence of the NAO is very similar in summer and winter (~5 days). This finding has implications for understanding the dynamics of the NAO.