973 resultados para Orleans County (N.Y.). Board of Supervisors
Resumo:
Cover-title.
Resumo:
Vols. for 1956- include budget of the Rochester Board of Education.
Resumo:
Mode of access: Internet.
Resumo:
Authorized by the Board of Supervisors.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
The materials presented here are intended to: a) accompany the document Supervisor Resource and b) provide technology supervisors with materials that may be readily shared with students. These resources are not designed to be distributed to students without contextualization, they are intended for use in workshops or in discussions between supervisors and students. As authors, we anticipate that supervisors or workshop facilitators are most likely to extract individual resources of interest for particular occasions. The materials have been developed from conversations with supervisors from the technology disciplines.
Resumo:
We highlight how directors and senior managers perceive the roles of a board to involve overseeing risk and compliance, strategy, governance, developing the CEO and senior management and managing stakeholders. We find that managers and directors perceive board effectiveness as linked to different combinations of these roles and that there appear to be differences in perceptions between different types of firms. We conclude that clarity around the board’s role set is critical to furthering the corporate governance research agenda, and that the relationship between board roles and perceived board effectiveness differs between managers and directors.
Resumo:
Nuclear Factor Y (NF-Y) is a trimeric complex that binds to the CCAAT box, a ubiquitous eukaryotic promoter element. The three subunits NF-YA, NF-YB and NF-YC are represented by single genes in yeast and mammals. However, in model plant species (Arabidopsis and rice) multiple genes encode each subunit providing the impetus for the investigation of the NF-Y transcription factor family in wheat. A total of 37 NF-Y and Dr1 genes (10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) in Triticum aestivum were identified in the global DNA databases by computational analysis in this study. Each of the wheat NF-Y subunit families could be further divided into 4-5 clades based on their conserved core region sequences. Several conserved motifs outside of the NF-Y core regions were also identified by comparison of NF-Y members from wheat, rice and Arabidopsis. Quantitative RT-PCR analysis revealed that some of the wheat NF-Y genes were expressed ubiquitously, while others were expressed in an organ-specific manner. In particular, each TaNF-Y subunit family had members that were expressed predominantly in the endosperm. The expression of nine NF-Y and two Dr1 genes in wheat leaves appeared to be responsive to drought stress. Three of these genes were up-regulated under drought conditions, indicating that these members of the NF-Y and Dr1 families are potentially involved in plant drought adaptation. The combined expression and phylogenetic analyses revealed that members within the same phylogenetic clade generally shared a similar expression profile. Organ-specific expression and differential response to drought indicate a plant-specific biological role for various members of this transcription factor family.
Resumo:
Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.
Resumo:
In an increasingly business technology (BT) dependent world, the impact of the extraordinary changes brought about by the nexus of mobile and cloud technologies, social media and big data is increasingly being felt in the board room. As leaders of enterprises of every type and size, board directors can no longer afford to ignore, delegate or avoid BT-related decisions. Competitive, financial and reputational risk is increased if boards fail to recognize their role in governing technology as an asset and in removing barriers to improving enterprise business technology governance (EBTG). Directors’ awareness of the need for EBTG is increasing. However, industry research shows that board level willingness to rectify the gap between awareness and action is very low or non-existent. This literature review-based research identifies barriers to EBTG effectiveness. It provides a practical starting point for board analysis. We offer four outcomes that boards might focus on to ensure the organizations they govern are not left behind by those led by the upcoming new breed of technology-savvy leaders. Most extant research looks backward for examples, examining data pre-2010, the time when a tipping point in the personal and business use of multimedia and mobile-internet devices significantly deepened the impacts of the identified nexus technology forces, and began rapidly changing the way many businesses engage with their customers, employees and stakeholders. We situate our work amidst these nexus forces, discuss the board’s role in EBTG in this context, and modernize current definitions of enterprise technology governance. The primary limitation faced is the lack of scholarly research relating to EBTG in the rapidly changing digital economy. Although we have used recent (2011 - 2013) industry surveys, the volume of these surveys and congruence across them is significant in terms of levels of increased awareness and calls for increased board attention and competency in EBTG and strategic information use. Where possible we have used scholarly research to illustrate or discuss industry findings.
Resumo:
Corporate scandals are as old as the corporate form itself. Consider, for example, the controversies surrounding the role of one of the first modern corporations, the British East India Company, in the Bengal famine of 1770 and in the Chinese opium trade. Yet it is the increasing scale and scope of unethical acts carried out by individuals in the name, and interests, of corporations that continue to be concerning. Recent revelations surrounding the extent of bribery and covert surveillance used by News Corporation journalists in its British operations continue to shock the world and undermine confidence in that organiszation and journalists in general. Yet despite the systemic nature of many of these unethical activities, corporate leaders generally plead ignorance when transgressions come to light. During the enquity into the News Corporation scandal, Rupert Murdoch, the CEO and chairman, rejected the assertion that he was ultimately 'responsible for this whole fiasco' (House of Commons, 2011, Q.230). Instead, like many corporate leaders before him, Murdoch placed blame on the employees within the newspaper. His responses poses an increasingly important question: Do corporate leaders bear responsibility for the conduct of individuals within a corporation and, if so, why?
Resumo:
This paper, which was part of a larger study, reports on a survey that explored the perceptions of 69 graduate supervisors regarding issues in supervision from three higher education institutions in Australia. Factors that contribute to student success in higher education research degrees are many and diverse, including a complex dance of student factors, supervisor factors, and their supervisory context factors, and those informed by cultural and language differences. Therefore, a complex system approach using Bayesian network modelling was used to explore how student and/or supervisor factors influence the success of culturally and linguistically diverse (CALD) graduate students in Engineering and IT. Findings suggest that key factors include the experience of supervisors in terms of experience with the Australian higher education system, personal cross-cultural experience.