952 resultados para Organic acids
Resumo:
The present work provides a regional-scale assessment of the changes in acidifying deposition in Finland over the past 30 years and the current pattern in the recovery of acid-sensitive lakes from acidification in relation to changes in sulphate deposition. This information is needed for documenting the ecosystem benefits of costly emission reduction policies and further actions in air pollution policy. The development of sulphate deposition in Finland reflects that of European SO2 emissions. Before the 1990s, reductions in sulphur emissions in Europe had been relatively small and sulphate deposition showed no consistent trends. Due to emission reduction measures that were then taken, sulphate deposition started to clearly decline from the late 1980s. The bulk deposition of sulphate has declined 40-60% in most parts of the country during 1990-2003. The decline in sulphate deposition exceeded the decline of base cation deposition, which resulted in a decrease in acidity and acidifying potential of deposition over the 1990s. Nitrogen deposition also decreased since the late 1980s, but less than that of sulphate, and levelling off during the 1990s. Sulphate concentrations in all types of small lakes throughout Finland have declined from the early 1990s. The relative decrease in lake sulphate concentrations (average 40-50%) during 1990-2003 was rather similar to the decline in sulphate deposition, indicating a direct response to the reduction in deposition. There are presently no indications of elevated nitrate concentrations in forested headwater lakes. Base cation concentrations are still declining in many lakes, especially in south Finland, but to a lesser extent than sulphate allowing buffering capacity (alkalinity) to increase, being significant in 60% of the study lakes. Chemical recovery is resulting in biological recovery with populations of acid-sensitive fish species increasing. The recovery has been strongest in lakes in which sulphate has been the major acidifying agent, and recovery has been the strongest and most consistent in lakes in south Finland. The recovery of lakes in central Finland and north Finland is not as widespread and strong as observed in south. Many catchments, particularly in central Finland, have a high proportion of peatlands and therefore high TOC concentrations in lakes, and runoff-induced surges of organic acids have been an important confounding factor suppressing the recovery of pH and alkalinity in these lakes. Chemical recovery is progressing even in the most acidified lakes, but the buffering capacity of many lakes is still low and still sensitive to acidic input. Further reduction in sulphur emissions are needed for the alkalinity to increase in the acidified lakes. Increasing total organic carbon (TOC) concentrations are indicated in small forest lakes in Finland. The trends appear to be related to decreasing sulphate deposition and improved acid-base status of the soil, and the rise in TOC is integral to recovery from acidification. A new challenge is climate change with potential trends in temperature, precipitation and runoff, which are expected to affect future chemical and biological recovery from acidification. The potential impact on the mobilization and leaching of organic acids may become particularly important in Finnish conditions. Long-term environmental monitoring has evidently shown the success of international emission abatement strategies. The importance and value of integrated monitoring approach including physical, chemical and biological variables is clearly indicated, and continuous environmental monitoring is needed as a scientific basis for further actions in air pollution policy.
Resumo:
Aerosol particles play a role in the earth ecosystem and affect human health. A significant pathway of producing aerosol particles in the atmosphere is new particle formation, where condensable vapours nucleate and these newly formed clusters grow by condensation and coagulation. However, this phenomenon is still not fully understood. This thesis brings an insight to new particle formation from an experimental point of view. Laboratory experiments were conducted both on the nucleation process and physicochemical properties related to new particle formation. Nucleation rate measurements are used to test nucleation theories. These theories, in turn, are used to predict nucleation rates in atmospheric conditions. However, the nucleation rate measurements have proven quite difficult to conduct, as different devices can yield nucleation rates with differences of several orders of magnitude for the same substances. In this thesis, work has been done to have a greater understanding in nucleation measurements, especially those conducted in a laminar flow diffusion chamber. Systematic studies of nucleation were also made for future verification of nucleation theories. Surface tensions and densities of substances related to atmospheric new particle formation were measured. Ternary sulphuric acid + ammonia + water is a proposed candidate to participate in atmospheric nucleation. Surface tensions of an alternative candidate to nucleate in boreal forest areas, sulphuric acid + dimethylamine + water, were also measured. Binary compounds, consisting of organic acids + water are possible candidates to participate in the early growth of freshly nucleated particles. All the measured surface tensions and densities were fitted with equations, thermodynamically consistent if possible, to be easily applied to atmospheric model calculations of nucleation and subsequent evolution of particle size.
Resumo:
Atmospheric aerosol particles have a significant impact on air quality, human health and global climate. The climatic effects of secondary aerosol are currently among the largest uncertainties limiting the scientific understanding of future and past climate changes. To better estimate the climatic importance of secondary aerosol particles, detailed information on atmospheric particle formation mechanisms and the vapours forming the aerosol is required. In this thesis we studied these issues by applying novel instrumentation in a boreal forest to obtain direct information on the very first steps of atmospheric nucleation and particle growth. Additionally, we used detailed laboratory experiments and process modelling to determine condensational growth properties, such as saturation vapour pressures, of dicarboxylic acids, which are organic acids often found in atmospheric samples. Based on our studies, we came to four main conclusions: 1) In the boreal forest region, both sulphurous compounds and organics are needed for secondary particle formation, the previous contributing mainly to particle formation and latter to growth; 2) A persistent pool of molecular clusters, both neutral and charged, is present and participates in atmospheric nucleation processes in boreal forests; 3) Neutral particle formation seems to dominate over ion-mediated mechanisms, at least in the boreal forest boundary layer; 4) The subcooled liquid phase saturation vapour pressures of C3-C9 dicarboxylic acids are of the order of 1e-5 1e-3 Pa at atmospheric temperatures, indicating that a mixed pre-existing particulate phase is required for their condensation in atmospheric conditions. The work presented in this thesis gives tools to better quantify the aerosol source provided by secondary aerosol formation. The results are particularly useful when estimating, for instance, anthropogenic versus biogenic influences and the fractions of secondary aerosol formation explained by neutral or ion-mediated nucleation mechanisms, at least in environments where the average particle formation rates are of the order of some tens of particles per cubic centimeter or lower. However, as the factors driving secondary particle formation are likely to vary depending on the environment, measurements on atmospheric nucleation and particle growth are needed from around the world to be able to better describe the secondary particle formation, and assess its climatic effects on a global scale.
Resumo:
The Earth s climate is a highly dynamic and complex system in which atmospheric aerosols have been increasingly recognized to play a key role. Aerosol particles affect the climate through a multitude of processes, directly by absorbing and reflecting radiation and indirectly by changing the properties of clouds. Because of the complexity, quantification of the effects of aerosols continues to be a highly uncertain science. Better understanding of the effects of aerosols requires more information on aerosol chemistry. Before the determination of aerosol chemical composition by the various available analytical techniques, aerosol particles must be reliably sampled and prepared. Indeed, sampling is one of the most challenging steps in aerosol studies, since all available sampling techniques harbor drawbacks. In this study, novel methodologies were developed for sampling and determination of the chemical composition of atmospheric aerosols. In the particle-into-liquid sampler (PILS), aerosol particles grow in saturated water vapor with further impaction and dissolution in liquid water. Once in water, the aerosol sample can then be transported and analyzed by various off-line or on-line techniques. In this study, PILS was modified and the sampling procedure was optimized to obtain less altered aerosol samples with good time resolution. A combination of denuders with different coatings was tested to adsorb gas phase compounds before PILS. Mixtures of water with alcohols were introduced to increase the solubility of aerosols. Minimum sampling time required was determined by collecting samples off-line every hour and proceeding with liquid-liquid extraction (LLE) and analysis by gas chromatography-mass spectrometry (GC-MS). The laboriousness of LLE followed by GC-MS analysis next prompted an evaluation of solid-phase extraction (SPE) for the extraction of aldehydes and acids in aerosol samples. These two compound groups are thought to be key for aerosol growth. Octadecylsilica, hydrophilic-lipophilic balance (HLB), and mixed phase anion exchange (MAX) were tested as extraction materials. MAX proved to be efficient for acids, but no tested material offered sufficient adsorption for aldehydes. Thus, PILS samples were extracted only with MAX to guarantee good results for organic acids determined by liquid chromatography-mass spectrometry (HPLC-MS). On-line coupling of SPE with HPLC-MS is relatively easy, and here on-line coupling of PILS with HPLC-MS through the SPE trap produced some interesting data on relevant acids in atmospheric aerosol samples. A completely different approach to aerosol sampling, namely, differential mobility analyzer (DMA)-assisted filter sampling, was employed in this study to provide information about the size dependent chemical composition of aerosols and understanding of the processes driving aerosol growth from nano-size clusters to climatically relevant particles (>40 nm). The DMA was set to sample particles with diameters of 50, 40, and 30 nm and aerosols were collected on teflon or quartz fiber filters. To clarify the gas-phase contribution, zero gas-phase samples were collected by switching off the DMA every other 15 minutes. Gas-phase compounds were adsorbed equally well on both types of filter, and were found to contribute significantly to the total compound mass. Gas-phase adsorption is especially significant during the collection of nanometer-size aerosols and needs always to be taken into account. Other aims of this study were to determine the oxidation products of β-caryophyllene (the major sesquiterpene in boreal forest) in aerosol particles. Since reference compounds are needed for verification of the accuracy of analytical measurements, three oxidation products of β-caryophyllene were synthesized: β-caryophyllene aldehyde, β-nocaryophyllene aldehyde, and β-caryophyllinic acid. All three were identified for the first time in ambient aerosol samples, at relatively high concentrations, and their contribution to the aerosol mass (and probably growth) was concluded to be significant. Methodological and instrumental developments presented in this work enable fuller understanding of the processes behind biogenic aerosol formation and provide new tools for more precise determination of biosphere-atmosphere interactions.
Resumo:
The present work reports the compositional analysis of thirteen different packed fruit juices using high performance liquid chromatography (HPLC). Vitamin C, organic acids (citric and malic) and sugars (fructose, glucose and sucrose) were separated, analyzed and quantified using different reverse phase methods. A new rapid reverse phase HPLC method was developed for routine analysis of vitamin C in fruit juices. The precision results of the methods showed that the relative standard deviations of the repeatability and reproducibility were < 0.05 and < 0.1 respectively. Correlation coefficient of the calibration models developed was found to be higher than 0.99 in each case. It has been found that the content of Vitamin C was less variable amongst different varieties involved in the study. It is also observed that in comparison to fresh juices, the packed juices contain lesser amounts of vitamin C. Citric acid was found as the major organic acids present in packed juices while maximum portion of sugars was of sucrose. Comparison of the amount of vitamin C, organic acids and sugars in same fruit juice of different commercial brands is also reported.
Resumo:
Nas últimas décadas, a disposição final de lixo tornou-se um sério problema a ser enfrentado por todos os países, em função da escassez crescente de terrenos disponíveis para aterros sanitários e distância cada vez maior dos centros geradores e a disposição final, assim como do aumento substancial da geração per capita. A acumulação de lixo nos grandes centros populacionais estimula a proliferação de macro e microvetores (ratos, baratas, moscas, vírus, bactérias, parasitos) e conseqüentemente, a disseminação de doenças. Em particular, com relação ao lixo gerado em ilhas e comunidades isoladas, é de alta relevância estratégias baseadas na descentralização do tratamento da fração orgânica de lixo domiciliar, com fim do transporte através de barcas para o continente, gerando mau cheiro e riscos de poluição ambiental. O presente projeto teve por objetivo: Testar o mesmo reator de compostagem descentralizada sob condições do verão sueco, alimentando-o com resíduos de restaurantes da cidade costeira Kalmar e sob condições brasileiras, alimentando-o com resíduos de cozinha da escola municipal de Abraão-Ilha Grande, RJ; propor modificações mecânicas e/ou operacionais para otimização dos processos; avaliar a qualidade e o grau de maturação do composto de diferentes fases através do método respirométrico Specific Oxygen Uptake Rate (SOUR)o método respirométrico NBR 14283 da ABNT. Em resumo, concluiu-se que a composição do lixo e pH inicial do material estruturante adicionado são fatores determinantes do tempo requerido para degradação dos ácidos orgânicos gerados e subseqüente elevação do pH; dependendo das características dos resíduos orgânicos, é necessária a inclusão de inoculante (ex: composto) para melhor desenvolvimento de bactérias e fungos e, conseqüentemente, otimização do processo; as análises físico-químicas e microbiológicas confirmaram que o processo de degradação aeróbia ocorre no interior do corpo principal do reator e que a qualidade do composto gerado é satisfatória; entretanto, melhorias consideráveis no sistema de trituração e alimentação são requeridas para que o reator testado possa se usado em sua capacidade plena. Os testes respirométrico atráves do Specific Oxygen Uptake Rate(SOUR) e da norma NBR 14283 da ABNT mostraram-se ambos eficazes na identificação do grau de maturação do composto e do avanço do processo de compostagem. Uma vez removidos os problemas mecânicos de trituração e alimentação, o reator testado poderá ser utilizado como uma tecnologia inovadora do tratamento de lixo orgânico in situ para pequenos e médios geradores de lixo orgânico domiciliar.
Resumo:
This study investigates the ozonation of 17 alpha-ethinylestradiol (EE2) in aqueous solution. The affecting factors on the degradation of EE2 were studied and described in details, such as initial EE2 concentration, initial pH value and ozone concentration. In addition, some parameters such as pH. electrical conductivity, mineralization efficiency and degradation products were monitored during the process. The mineralization efficiency of EE2 could reach 53.9%. During the ozonation process the rapid decrease of pH and the sharp increase of electrical conductivity indicated the fort-nation of acidic by-products, small fragments and ions which were confirmed by high performance liquid chromatography (HPLC) and gas chromatography-mass spectrometry (GUMS) analysis. Results showed that there were intermediate products of smaller molecule with higher polarity produced during the course of EE2 degradation. Then a possible reaction pathway for EE2 degradation involving all intermediates detected is proposed. During the ozonation process EE2 was first oxidized into hydroxyl-semiquinone isomers which were subsequently degraded into low molecular weight compounds such as oxalic acid, malonate, glutarate, and so on. Furthermore. these organic acids are easily oxidized by ozone into carbon dioxide (CO2). This work shows that ozonation process is promising for the removal of EE2. The results can provide some useful information for the potential treatment of EE2 by ozonation in aqueous solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Solid acid 40SiO(2)/TiO2-SO42- and solid base 30K(2)CO(3)/Al2O3-NaOH were prepared and compared with catalytic esterification activity according to the model reaction. Upgrading bio-oil by solid acid and solid base catalysts in the conditioned experiment was investigated, in which dynamic viscosities of bio-oil was lowered markedly, although 8 months of aging did not show much viscosity to improve its fluidity and enhance its stability positively. Even the dehydration by 3A molecular sieve still kept the fluidity well. The density of upgraded bio-oil was reduced from 1.24 to 0.96 kg/m(3), and the gross calorific value increased by 50.7 and 51.8%, respectively. The acidity of upgraded bio-oil was alleviated by the solid base catalyst but intensified by the solid acid catalyst for its strong acidification. The results of gas chromatography-mass spectrometry analysis showed that the ester reaction in the bio-oil was promoted by both solid acid and solid base catalysts and that the solid acid catalyst converted volatile and nonvolatile organic acids into esters and raised their amount by 20-fold. Besides the catalytic esterification, the solid acid catalyst carried out the carbonyl addition of alcohol to acetals. Some components of bio-oil undertook the isomerization over the solid base catalyst.
Resumo:
砷(As)在自然环境下的迁移转化受到矿物质尤其是铁氧化物吸附过程的制约,大量溶解性有机酸影响了砷的吸附过程。 柠檬酸(CA)和As(Ⅴ)不同加入顺序实验表明CA抑制As(Ⅴ)吸附与其促进针铁矿溶解有关。当CA首先加入时,吸附体系溶解铁浓度为~0.3mmol/L,As(Ⅴ)吸附量随初始浓度增加在0.004~0.10mmol/g针铁矿之间;As(Ⅴ)先加入体系,溶解铁浓度为~0.16mmol/L,As(Ⅴ)吸附量在0.007~0.12mmol/g针铁矿之间。为进一步考察有机酸溶解作用对As(Ⅴ)吸附影响,本研究比较了在柠檬酸(1.0 mM)、草酸(1.5 mM)和乙酸(3.0 mM)与As(Ⅴ)共存条件下砷吸附变化和针铁矿溶解状况,结合三种有机酸引起针铁矿表面等质子状态点迁移结果认为:草酸促进针铁矿溶解趋势强于柠檬酸,而抑制砷吸附程度低于柠檬酸,可归因于小分子量有机酸抑制砷吸附是竞争表面位与溶解作用协同作用的结果。 在酸性区域,CA和As(Ⅴ)共存导致二者在针铁矿表面吸附量分别下降28%和29%左右,这与二者在针铁矿表面发生竞争吸附作用有关。在碱性区域,As(Ⅴ)吸附不受CA存在的影响;CA则随加入顺序不同存在明显差异:As(Ⅴ)先于CA加入的体系,CA严重下降达75%左右,而当CA先加入时,As(Ⅴ)的后续加入导致CA吸附少量升高。As(Ⅴ)对CA在碱性区域的影响与二者随pH变化吸附模式不同有关。 本研究采用平衡透析的方式研究了砷在腐殖酸和针铁矿之间的迁移转化问题。结果显示腐殖酸的存在影响了砷向针铁矿表面的迁移,且对As(Ⅴ)的影响比As(Ⅲ)更显著。在酸性区域,腐殖酸导致As(Ⅴ)在针铁矿表面分配系数降低最高可达70%左右;对As(Ⅲ)而言,腐殖酸在弱酸性、中性和弱碱性区域表现出最大抑制效应,As(Ⅲ)分配系数的降低在10%左右。
Resumo:
采用盆栽试验,研究了2种含钾土壤条件下不同有机酸对茄子产量和生长发育的影响。结果表明:通过叶面喷施有机酸可提高茄子单果重,改善植株的生长发育状况。其中,有机酸钾、甲酸、柠檬酸、乙酰丙酸与对照之间有显著差异;高钾土壤高于低钾土壤产量,且差异显著。有机酸的增产效果依次为有机酸钾>甲酸>柠檬酸>乙酰丙酸>草酸>丙酸>乙酸。
Resumo:
通过模拟试验研究了鸡粪和奶牛粪肥堆腐过程中有机酸的种类、含量和变化规律。结果表明 ,鸡粪腐熟过程中会形成和累积大量的有机酸 ,在堆腐的第 5周 ,最高含量可达 88 2cmol/kg ,DW ;不挥发性有机酸在堆腐的第 3周和第 5周分别达到两个高峰 ,挥发性有机酸在第 6周和第 9周分别达到高峰 ,到第 9周后 ,鸡粪中的有机酸大大降低。鸡粪中除了存在大量的芳香酸如苯二酸及其衍生物外 ,在堆腐的过程中还有大量的丁二酸及其衍生物等多元脂肪酸生成。奶牛粪肥的有机酸以不挥发性有机酸为主 ,总酸量最高可达 2 9 38cmol/kg ,DW ;奶牛粪肥中的不挥发有机酸主要是苯二羧酸的衍生物和长链脂肪酸。堆腐过程中有机酸的种类和数量变化较大。堆腐的第 6周 ,产生了多种激素类物质
Resumo:
本文通过生物追踪实验法 ,研究了鸡粪中有机酸的生物活性成分 ,并从中筛选出了一种强活性物质 .通过红外光谱和质谱及生源关系初步确定其分子式为C36H56O18Na,名称为 3-O -D -葡萄糖 -6,1 -0 -葡萄糖酸 2 β ,2 ,2 0 -二羟基蛋甾酸钠
Resumo:
The biodegradation of most PAHs with high molecular weight is carried out by means of cometabolism. The development of the theory about cometabolic degradation is reviewed in this paper, and the achievements on the cometabolic degradations of PAHs are also summarized. It is demonstrated that glucose, biphenyl, organic acids and mineral oil could be used as cometabolic substrate to enhance the degradation rate of PAHs, and there are complex interactions in the microbiological degradation process among different PAHs. Some low molecular PAHs could serve as cometabolic substrate, which could also be used to enhance the transformation rate of high molecular weight recalcitrant PAHs. To achieve the cometabolic degradation of the PAHs in the soils, the following problems must be solved: the screening out of efficient degradative strains, the selection of the appropriate cometabolic substrate, the addition of surfactant if necessary and the optimization of operational parameters with the contaminated soils. These problems are the important parts of the project for the cometabolic degradation of PAHs in the soils.
Resumo:
A novel approach of generating cathodic electrochemiluminescence lof Ru(bpy)(3)(2+) at -0.4 V triggered by reactive oxygen species is reported for detecting alkylamines and some organic acids.
Resumo:
Aluminum solid electrolytic capacitors with polyaniline doped with inorganic and organic acids as counterelectrode were fabricated, their properties were studied.