939 resultados para Oracle of Release


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conditions leading to a maximum range for a small, round projectile, fired by hand, are discussed taking into account air drag and the dependence of the initial speed on the mass launched. Both the optimal angle of release for given projectile and initial speed, and the optimal radius for given density (i.e., among a bed of pebbles) are determined; an increase on the height of release is found to always decrease the angle and increase the radius. The influence of the projectile mass on the optimal manner of launching is considered. The validity of the approximations used in the analysis is discussed. Results from very simple measurements show good agreement with theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Steroids produced locally in brain (neurosteroids), including dehydroepiandrosterone (DHEA), influence cognition and behavior. We previously described a novel cytochrome P450, Cyp7b, strongly expressed in rat and mouse brain, particularly in hippocampus. Cyp7b is most similar to steroidogenic P450s and potentially could play a role in neurosteroid metabolism. To examine the catalytic activity of the enzyme mouse Cyp7b cDNA was introduced into a vaccinia virus vector. Extracts from cells infected with the recombinant showed NADPH-dependent conversion of DHEA (Km, 13.6 μM) and pregnenolone (Km, 4.0 μM) to slower migrating forms on thin layer chromatography. The expressed enzyme was less active against 25-hydroxycholesterol, 17β-estradiol and 5α-androstane-3β,17β-diol, with low to undetectable activity against progesterone, corticosterone, and testosterone. On gas chromatography and mass spectrometry of the Cyp7b metabolite of DHEA the retention time and fragmentation patterns were identical to those obtained with authentic 7α-hydroxy DHEA. The reaction product also comigrated on thin layer chromatography with 7α-hydroxy DHEA but not with 7β-hydroxy DHEA; when [7α-3H]pregnenolone was incubated with Cyp7b extracts the extent of release of radioactivity into the medium suggested that hydroxylation was preferentially at the 7α position. Brain extracts also efficiently liberated tritium from [7α-3H]pregnenolone and converted DHEA to a product with a chromatographic mobility indistinguishable from 7α-hydroxy DHEA. We conclude that Cyp7b is a 7α-hydroxylase participating in the synthesis, in brain, of neurosteroids 7α-hydroxy DHEA, and 7α-hydroxy pregnenolone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Studies on transglutaminases usually focus on the polymerization of protein substrates by intermolecular Nɛ(γ-glutamyl)lysine bridges, without considering the possibility that the monomeric protein units, themselves, could also become crosslinked internally. Both types of crosslinks are produced in the reaction of fibrinogen with red cell transglutaminase. We isolated the transglutaminase-modified, mostly monomeric form (92–96%) of fibrinogen with a Nɛ(γ-glutamyl)lysine content of ≈1.6 moles/mole of fibrinogen. The preparation was fully clottable by thrombin, but the rates of release of fibrinopeptides and clotting times were delayed compared with control. Hybrid Aα⋅γ type of crosslinking, the hallmark of the reaction of the transglutaminase with fibrinogen, occurred by bridging the Aα(408–421) chain segment of the protein to that of γ(392–406). Rotary shadowed electron microscope images showed many monomers to be bent, and the crosslinks seemed to bind the otherwise flexible αC domain closer to the backbone of fibrinogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We report here a hitherto undescribed form of cell migration. When a suspension of human keratinocytes is plated on a fibrin matrix, single cells invade the matrix and progress through it as rounded cells by dissolving the fibrin and thereby creating tunnels. These tunnels are cylindrical or helical, the latter being the result of constant change in the path of cellular advance around the helical axis. Helical tunnel formation is strongly promoted by epidermal growth factor. The rate of migration of the cell through the track of a helical tunnel (up to 2.1 mm per day) is about 7-fold greater than through a cylindrical tunnel. Pericellular fibrinolysis leading to tunnel formation depends on the presence of plasminogen in the medium and its conversion to plasmin by a cellular activator. Formation of tunnels requires that plasminogen activator be localized on the advancing surface of the keratinocyte; we propose that the tunnel is cylindrical when the site of release of plasmin is located at a fixed point on the cell surface and helical when the site of release precesses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Synaptophysin (syp I) is a synaptic vesicle membrane protein that constitutes approximately 7% of the total vesicle protein. Multiple lines of evidence implicate syp I in a number of nerve terminal functions. To test these, we have disrupted the murine Syp I gene. Mutant mice lacking syp I were viable and fertile. No changes in the structure and protein composition of the mutant brains were observed except for a decrease in synaptobrevin/VAMP II. Synaptic transmission was normal with no detectable changes in synaptic plasticity or the probability of release. Our data demonstrate that one of the major synaptic vesicle membrane proteins is not essential for synaptic transmission, suggesting that its function is either redundant or that it has a more subtle function not apparent in the assays used.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prothoracicotropic hormone (PTTH) is the central cerebral neurohormone in insect development. Its release has been believed for decades to be confined to one (or two) critical moments early in each developmental stage at which time it triggers prolonged activation of the prothoracic glands to synthesize and release the steroid molting hormones (ecdysteroids), which elicit developmental responses in target tissues. We used an in vitro assay for PTTH released from excised brains of the bug Rhodnius prolixus and report that release of PTTH does occur at the expected time on day 6, but that this release is merely the first in a daily rhythm of release that continues throughout most of the 21 days of larval-adult development. This finding, together with reports of circadian control of ecdysteroid synthesis and titer throughout this time, raises significant challenges to several features of the current understanding of the hormonal control of insect development. New questions are raised concerning the function(s) of PTTH, its relationship with the prothoracic glands, and the significance of circadian rhythmicity throughout this endocrine axis. The significance of the reported observations derives from the set of entirely new questions they raise concerning the regulation of insect development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Escherichia coli chaperonins GroEL and GroES facilitate the refolding of polypeptide chains in an ATP hydrolysis-dependent reaction. The elementary steps in the binding and release of polypeptide substrates to GroEL were investigated in surface plasmon resonance studies to measure the rates of binding and dissociation of a normative variant of subtilisin. The rate constants determined for GroEL association with and dissociation from this variant yielded a micromolar dissociation constant, in agreement with independent calorimetric estimates. The rate of GroEL dissociation from the nonnative chain was increased significantly in the presence of 5'-adenylylimidodiphosphate (AMP-PNP), ADP, and ATP, yielding maximal values between 0.04 and 0.22 s(-1). The sigmoidal dependence of the dissociation rate on the concentration of AMP-PNP and ADP indicated that polypeptide dissociation is limited by a concerted conformational change that occurs after nucleotide binding. The dependence of the rate of release on ATP exhibited two sigmoidal transitions attributable to nucleotide binding to the distal and proximal toroid of a GroEL-polypeptide chain complex. The addition of GroES resulted in a marked increase in the rate of nonnative polypeptide release from GroEL, indicating that the cochaperonin binds more rapidly than the dissociation of polypeptides. These data demonstrate the importance of nucleotide binding-promoted concerted conformational changes for the release of chains from GroEL, which correlate with the sigmoidal hydrolysis of ATP by the chaperonin. The implications of these findings are discussed in terms of a working hypothesis for a single cycle of chaperonin action.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

While previous studies have demonstrated that synaptotagmin plays an essential role in evoked neurotransmitter release, it has been difficult to determine whether it acts to facilitate or inhibit release. To address this question, we used acute genetic manipulations to alter the expression of synaptotagmin in Aplysia neurons. Transient overexpression of synaptotagmin in acutely dissected cholinergic neurons and in cultured glutaminergic neurons decreased the amplitude of the excitatory postsynaptic potential (EPSP) by 32% and 26%, respectively. In contrast, treatment of cultured presynaptic neurons with synaptotagmin antisense oligonucleotides increased the amplitude of the EPSP by 50-75%. These results are consistent with a role of synaptotagmin as an inhibitor of release.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Autograph manuscript, signed, with autograph manuscript revisions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Partly reprinted from various periodicals.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

beta2-Laminin is important for the formation of neuromuscular junctions in vertebrates. Previously, we have inactivated the gene that encodes for beta2-laminin in mice and observed predominantly prejunctional structural defects. In this study, we have used both intra- and extracellular recording methods to investigate evoked neurotransmission in beta2-laminin-deficient mice, from postnatal day 8 (P8) through to day 18(P18). Our results confirmed that there was a decrease in the frequency of spontaneous release, but no change in the postjunctional response to such release. Analysis of evoked neurotransmission showed an increase in the frequency of stimuli that failed to elicit an evoked postjunctional response in the mutants compared to litter mate controls, resulting in a 50% reduction in mean quantal content at mutant terminals. Compared to littermate controls, beta2-laminin-deficient terminals showed greater synaptic depression when subjected to high frequency stimulation. Furthermore, the paired pulse ratio of the first two stimuli was significantly lower in beta2-laminin mutant terminals. Statistical analysis of the binomial parameters of release showed that the decrease in quantal content was due to a decrease in the number of release sites without any significant change in the average probability of release. This suggestion was supported by the observation of fewer synaptic vesicle protein 2 (SV2)-positive varicosities in beta2-laminin-deficient terminals and by ultrastructural observations showing smaller terminal profiles and increased Schwann cell invasion in beta2-laminin mutants; the differences between beta2-laminin mutants and wild-type mice were the same at both P8 and P18. From these results we conclude that beta2-laminin plays a role in the early structural development of the neuromuscular junction. We also suggest that transmitter release activity may act as a deterrent to Schwarm cell invasion in the absence of beta2-laminin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A model drug release study on the ingress of water and Kokubo simulated body fluid (SBF) into poly(2-hydroxyethyl methacrylate) (THFMA) and its copolymers with tetrahydrofurfuryl methacrylate (THFMA) loaded with vitamin B-12 was undertaken over the temperature range 298-318 K. The polymers were studied as cylinders and were loaded with either 5 or 10 wt-% of the drug. The drug release from the polymers was found to follow a Fickian diffusion mechanism in the early stages of the drug release, with higher normalized release rates at higher temperatures and higher drug loadings. The normalized release rates were also found to be higher for the SBF solution than for water. The copolymer composition was found to have a significant effect on the rate of release of the drug, with the rate falling rapidly between HEMA mole fractions of 1.0 and 0.8, but for lower mole fractions of HEMA the normalized release rate decreased more slowly. This behaviour followed the trend found for the changes in the equilibrium penetrant contents for the copolymers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Various factors can influence the population dynamics of phytophages post introduction, of which climate is fundamental. Here we present an approach, using a mechanistic modelling package (CLIMEX), that at least enables one to make predictions of likely dynamics based on climate alone. As biological control programs will have minimal funding for basic work (particularly on population dynamics), we show how predictions can be made using a species geographical distribution, relative abundance across its range, seasonal phenology and laboratory rearing data. Many of these data sets are more likely to be available than long-term population data, and some can be incorporated into the exploratory phase of a biocontrol program. Although models are likely to be more robust the more information is available, useful models can be developed using information on species distribution alone. The fitted model estimates a species average response to climate, and can be used to predict likely geographical distribution if introduced, where the agent is likely to be more abundant (i.e. good locations) and more importantly for interpretation of release success, the likely variation in abundance over time due to intra- and inter-year climate variability. The latter will be useful in predicting both the seasonal and long-term impacts of the potential biocontrol agent on the target weed. We believe this tool may not only aid in the agent selection process, but also in the design of release strategies, and for interpretation of post-introduction dynamics and impacts. More importantly we are making testable predictions. If biological control is to become more of a science making and testing such hypothesis will be a key component.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a central integrator of basal ganglia function, the external segment of the globus pallidus (GP) plays a critical role in the control of voluntary movement. Driven by intrinsic mechanisms and excitatory glutamatergic inputs from the subthalamic nucleus, GP neurons receive GABAergic inhibitory input from the striatum (Str-GP) and from local collaterals of neighbouring pallidal neurons (GP-GP). Here we provide electrophysiological evidence for functional differences between these two inhibitory inputs. The basic synaptic characteristics of GP-GP and Str-GP GABAergic synapses were studied using whole-cell recordings with paired-pulse and train stimulation protocols and variance-mean (VM) analysis. We found (i) IPSC kinetics are consistent with local collaterals innervating the soma and proximal dendrites of GP neurons whereas striatal inputs innervate more distal regions. (ii) Compared to GP-GP synapses Str-GP synapses have a greater paired-pulse ratio, indicative of a lower probability of release. This was confirmed using VM analysis. (iii) In response to 20 and 50 Hz train stimulation, GP-GP synapses are weakly facilitatory in 1 mm external calcium and depressant in 2.4 mm calcium. This is in contrast to Str-GP synapses which display facilitation under both conditions. This is the first quantitative study comparing the properties of GP-GP and Str-GP synapses. The results are consistent with the differential location of these inhibitory synapses and subtle differences in their release probability which underpin stable GP-GP responses and robust short-term facilitation of Str-GP responses. These fundamental differences may provide the physiological basis for functional specialization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antisense technology is a novel drug discovery method, which provides an essential tool for directly using gene sequence information to rationally design specific inhibitions of mRNA, to treat a wide range of diseases. The efficacy of naked oligodeoxynucleotides (ODNs) is relatively short lived due to rapid degradation in vivo. The entrapment of ODNs within biodegradable sustained-release delivery systems may improve ODN stability and reduce dose required for efficacy. Biodegradable polymer microspheres were evaluated as delivery devices for ODNs and ribozymes. Poly(lactide-co-glycolide) polymers were used due to their biocompatibility and non toxic degradation products. Microspheres were prepared using a double emulsion-deposition method and the formulations characterised. In vitro release profiles were characterised by an initial burst effect during the first 48 hours of release followed by a more sustained release. The release profiles were influenced by microsphere size, copolymer molecular weight, copolymer ratio, ODN loading, ODN length, and ODN chemistry. The serum stability of ODNs was significantly improved when entrapped within polymer microspheres. The cellular association of ODNs entrapped within small spheres (1-2μm) was improved by approximately 20-fold in A431 carcinoma cells compared with free ODNs. Fluorescence microscopy studies showed a more diffuse subcellular distribution when delivered as a microsphere formulation compared with free ODNs, which exhibited the characteristic punctate periplasmic distribution. For in vivo evaluation, polymer microspheres containing fluorescently-labelled ODNs were stereo-taxically administered to the neostriatum of the rat brain. Free ODN resulted in a punctate cellular distribution after 24 hours. In comparison ODN delivered using polymer microspheres were intensely visible in cells 48 hours post administration, and fluorescence appeared to be diffuse covering both cytosolic and nuclear regions. Whole-body autoradiography was also used to evaluate the biodistribution of free tritium labelled ODN and ODN entrapped microspheres, following subcutaneous administration to Balb-C mice. Polymer entrapped ODN gave a similar biodistribution to free ODN. Free ODN was distributed within 24 hours, whereas polymer released ODN was observed still presented in organs and at the site of administration seven days post administration.