995 resultados para Optimization software


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The complex of questions connected with the analysis, estimation and structural-parametrical optimization of dynamic system is considered in this article. Connection of such problems with tasks of control by beams of trajectories is emphasized. The special attention is concentrated on the review and analysis of spent scientific researches, the attention is stressed to their constructability and applied directedness. Efficiency of the developed algorithmic and software is demonstrated on the tasks of modeling and optimization of output beam characteristics in linear resonance accelerators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work is to present a methodology to develop cost-effective thermal management solutions for microelectronic devices, capable of removing maximum amount of heat and delivering maximally uniform temperature distributions. The topological and geometrical characteristics of multiple-story three-dimensional branching networks of microchannels were developed using multi-objective optimization. A conjugate heat transfer analysis software package and an automatic 3D microchannel network generator were developed and coupled with a modified version of a particle-swarm optimization algorithm with a goal of creating a design tool for 3D networks of optimized coolant flow passages. Numerical algorithms in the conjugate heat transfer solution package include a quasi-ID thermo-fluid solver and a steady heat diffusion solver, which were validated against results from high-fidelity Navier-Stokes equations solver and analytical solutions for basic fluid dynamics test cases. Pareto-optimal solutions demonstrate that thermal loads of up to 500 W/cm2 can be managed with 3D microchannel networks, with pumping power requirements up to 50% lower with respect to currently used high-performance cooling technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acknowledgments The authors acknowledge the support from Engineering and Physical Sciences Research Council, grant number EP/M002322/1. The authors would also like to thank Numerical Analysis Group at the Rutherford Appleton Laboratory for their FORTRAN HSL packages (HSL, a collection of Fortran codes for large-scale scientific computation. See http://www.hsl.rl.ac.uk/).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to huge popularity of portable terminals based on Wireless LANs and increasing demand for multimedia services from these terminals, the earlier structures and protocols are insufficient to cover the requirements of emerging networks and communications. Most research in this field is tailored to find more efficient ways to optimize the quality of wireless LAN regarding the requirements of multimedia services. Our work is to investigate the effects of modulation modes at the physical layer, retry limits at the MAC layer and packet sizes at the application layer over the quality of media packet transmission. Interrelation among these parameters to extract a cross-layer idea will be discussed as well. We will show how these parameters from different layers jointly contribute to the performance of service delivery by the network. The results obtained could form a basis to suggest independent optimization in each layer (an adaptive approach) or optimization of a set of parameters from different layers (a cross-layer approach). Our simulation model is implemented in the NS-2 simulator. Throughput and delay (latency) of packet transmission are the quantities of our assessments. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mobile Network Optimization (MNO) technologies have advanced at a tremendous pace in recent years. And the Dynamic Network Optimization (DNO) concept emerged years ago, aimed to continuously optimize the network in response to variations in network traffic and conditions. Yet, DNO development is still at its infancy, mainly hindered by a significant bottleneck of the lengthy optimization runtime. This paper identifies parallelism in greedy MNO algorithms and presents an advanced distributed parallel solution. The solution is designed, implemented and applied to real-life projects whose results yield a significant, highly scalable and nearly linear speedup up to 6.9 and 14.5 on distributed 8-core and 16-core systems respectively. Meanwhile, optimization outputs exhibit self-consistency and high precision compared to their sequential counterpart. This is a milestone in realizing the DNO. Further, the techniques may be applied to similar greedy optimization algorithm based applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adjoint methods have proven to be an efficient way of calculating the gradient of an objective function with respect to a shape parameter for optimisation, with a computational cost nearly independent of the number of the design variables [1]. The approach in this paper links the adjoint surface sensitivities (gradient of objective function with respect to the surface movement) with the parametric design velocities (movement of the surface due to a CAD parameter perturbation) in order to compute the gradient of the objective function with respect to CAD variables.
For a successful implementation of shape optimization strategies in practical industrial cases, the choice of design variables or parameterisation scheme used for the model to be optimized plays a vital role. Where the goal is to base the optimization on a CAD model the choices are to use a NURBS geometry generated from CAD modelling software, where the position of the NURBS control points are the optimisation variables [2] or to use the feature based CAD model with all of the construction history to preserve the design intent [3]. The main advantage of using the feature based model is that the optimized model produced can be directly used for the downstream applications including manufacturing and process planning.
This paper presents an approach for optimization based on the feature based CAD model, which uses CAD parameters defining the features in the model geometry as the design variables. In order to capture the CAD surface movement with respect to the change in design variable, the “Parametric Design Velocity” is calculated, which is defined as the movement of the CAD model boundary in the normal direction due to a change in the parameter value.
The approach presented here for calculating the design velocities represents an advancement in terms of capability and robustness of that described by Robinson et al. [3]. The process can be easily integrated to most industrial optimisation workflows and is immune to the topology and labelling issues highlighted by other CAD based optimisation processes. It considers every continuous (“real value”) parameter type as an optimisation variable, and it can be adapted to work with any CAD modelling software, as long as it has an API which provides access to the values of the parameters which control the model shape and allows the model geometry to be exported. To calculate the movement of the boundary the methodology employs finite differences on the shape of the 3D CAD models before and after the parameter perturbation. The implementation procedure includes calculating the geometrical movement along a normal direction between two discrete representations of the original and perturbed geometry respectively. Parametric design velocities can then be directly linked with adjoint surface sensitivities to extract the gradients to use in a gradient-based optimization algorithm.
The optimisation of a flow optimisation problem is presented, in which the power dissipation of the flow in an automotive air duct is to be reduced by changing the parameters of the CAD geometry created in CATIA V5. The flow sensitivities are computed with the continuous adjoint method for a laminar and turbulent flow [4] and are combined with the parametric design velocities to compute the cost function gradients. A line-search algorithm is then used to update the design variables and proceed further with optimisation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reverse engineering is usually the stepping stone of a variety of at-tacks aiming at identifying sensitive information (keys, credentials, data, algo-rithms) or vulnerabilities and flaws for broader exploitation. Software applica-tions are usually deployed as identical binary code installed on millions of com-puters, enabling an adversary to develop a generic reverse-engineering strategy that, if working on one code instance, could be applied to crack all the other in-stances. A solution to mitigate this problem is represented by Software Diversity, which aims at creating several structurally different (but functionally equivalent) binary code versions out of the same source code, so that even if a successful attack can be elaborated for one version, it should not work on a diversified ver-sion. In this paper, we address the problem of maximizing software diversity from a search-based optimization point of view. The program to protect is subject to a catalogue of transformations to generate many candidate versions. The problem of selecting the subset of most diversified versions to be deployed is formulated as an optimisation problem, that we tackle with different search heuristics. We show the applicability of this approach on some popular Android apps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The selection of a set of requirements between all the requirements previously defined by customers is an important process, repeated at the beginning of each development step when an incremental or agile software development approach is adopted. The set of selected requirements will be developed during the actual iteration. This selection problem can be reformulated as a search problem, allowing its treatment with metaheuristic optimization techniques. This paper studies how to apply Ant Colony Optimization algorithms to select requirements. First, we describe this problem formally extending an earlier version of the problem, and introduce a method based on Ant Colony System to find a variety of efficient solutions. The performance achieved by the Ant Colony System is compared with that of Greedy Randomized Adaptive Search Procedure and Non-dominated Sorting Genetic Algorithm, by means of computational experiments carried out on two instances of the problem constructed from data provided by the experts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing complexity of today's software, the software development process is becoming highly time and resource consuming. The increasing number of software configurations, input parameters, usage scenarios, supporting platforms, external dependencies, and versions plays an important role in expanding the costs of maintaining and repairing unforeseeable software faults. To repair software faults, developers spend considerable time in identifying the scenarios leading to those faults and root-causing the problems. While software debugging remains largely manual, it is not the case with software testing and verification. The goal of this research is to improve the software development process in general, and software debugging process in particular, by devising techniques and methods for automated software debugging, which leverage the advances in automatic test case generation and replay. In this research, novel algorithms are devised to discover faulty execution paths in programs by utilizing already existing software test cases, which can be either automatically or manually generated. The execution traces, or alternatively, the sequence covers of the failing test cases are extracted. Afterwards, commonalities between these test case sequence covers are extracted, processed, analyzed, and then presented to the developers in the form of subsequences that may be causing the fault. The hypothesis is that code sequences that are shared between a number of faulty test cases for the same reason resemble the faulty execution path, and hence, the search space for the faulty execution path can be narrowed down by using a large number of test cases. To achieve this goal, an efficient algorithm is implemented for finding common subsequences among a set of code sequence covers. Optimization techniques are devised to generate shorter and more logical sequence covers, and to select subsequences with high likelihood of containing the root cause among the set of all possible common subsequences. A hybrid static/dynamic analysis approach is designed to trace back the common subsequences from the end to the root cause. A debugging tool is created to enable developers to use the approach, and integrate it with an existing Integrated Development Environment. The tool is also integrated with the environment's program editors so that developers can benefit from both the tool suggestions, and their source code counterparts. Finally, a comparison between the developed approach and the state-of-the-art techniques shows that developers need only to inspect a small number of lines in order to find the root cause of the fault. Furthermore, experimental evaluation shows that the algorithm optimizations lead to better results in terms of both the algorithm running time and the output subsequence length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the system’s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes five significant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identifies a locality richness which exists naturally in connected objects that contain a root object and its reachable set— ‘rooted sub-graphs’. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artificial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for configuring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-specific and configuring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents how new paradigms and methodologies for software development are changing rapidly in the last two years. In the current scenario where we live on, occurs a transition that, although slight, reflects the rapid manner in which the software production paradigms are reinvented due to the change of display devices and interaction with the end user. Studies indicate that in 2013 was the turn out of the internet access domain for mobile devices over the traditional desktop device, which is currently at around 60% mobile, against 40% desktop. This field will tend to grow in the coming years and it is expected that the use of internet for a desktop terminal tends to be less each day (comScore). In this context, the software industry has been re-invented and updated with respect to technologies that promote software and mobile applications, building products capable of responding to the user market. The development of software products, such as applications, must be put into production for different user environments, such as Web, iOS and Android in a way to enhance efficiency, optimization and productivity in the software development cycle (Langer, Arthur M.).