988 resultados para Optimization framework
Resumo:
Laser trackers have been widely used in many industries to meet increasingly high accuracy requirements. In laser tracker measurement, it is complex and difficult to perform an accurate error analysis and uncertainty evaluation. This paper firstly reviews the working principle of single beam laser trackers and state-of- The- Art of key technologies from both industrial and academic efforts, followed by a comprehensive analysis of uncertainty sources. A generic laser tracker modelling method is formulated and the framework of the virtual tracker is proposed. The VLS can be used for measurement planning, measurement accuracy optimization and uncertainty evaluation. The completed virtual laser tracking system should take all the uncertainty sources affecting coordinate measurement into consideration and establish an uncertainty model which will behave in an identical way to the real system. © Springer-Verlag Berlin Heidelberg 2010.
Resumo:
The effectiveness of an optimization algorithm can be reduced to its ability to navigate an objective function’s topology. Hybrid optimization algorithms combine various optimization algorithms using a single meta-heuristic so that the hybrid algorithm is more robust, computationally efficient, and/or accurate than the individual algorithms it is made of. This thesis proposes a novel meta-heuristic that uses search vectors to select the constituent algorithm that is appropriate for a given objective function. The hybrid is shown to perform competitively against several existing hybrid and non-hybrid optimization algorithms over a set of three hundred test cases. This thesis also proposes a general framework for evaluating the effectiveness of hybrid optimization algorithms. Finally, this thesis presents an improved Method of Characteristics Code with novel boundary conditions, which better characterizes pipelines than previous codes. This code is coupled with the hybrid optimization algorithm in order to optimize the operation of real-world piston pumps.
Resumo:
This article introduces the Evaluation Framework EFI for the Impact Measurement of learning, education and training: The Evaluation Framework for Impact Measurement was developed for specifying the evaluation phase and its objectives and tasks within the IDEAL Reference Model for the introduction and optimization of quality development within learning, education and training. First, a description of the Evaluation Framework for Impact Measurement will be provided, followed by a brief overview of the IDEAL Reference Model. Finally, an example for the implementation of the Evaluation Framework for Impact Measurement within the ARISTOTELE project is presented.
Resumo:
This paper describes an implementation of a method capable of integrating parametric, feature based, CAD models based on commercial software (CATIA) with the SU2 software framework. To exploit the adjoint based methods for aerodynamic optimisation within the SU2, a formulation to obtain geometric sensitivities directly from the commercial CAD parameterisation is introduced, enabling the calculation of gradients with respect to CAD based design variables. To assess the accuracy and efficiency of the alternative approach, two aerodynamic optimisation problems are investigated: an inviscid, 3D, problem with multiple constraints, and a 2D high-lift aerofoil, viscous problem without any constraints. Initial results show the new parameterisation obtaining reliable optimums, with similar levels of performance of the software native parameterisations. In the final paper, details of computing CAD sensitivities will be provided, including accuracy as well as linking geometric sensitivities to aerodynamic objective functions and constraints; the impact in the robustness of the overall method will be assessed and alternative parameterisations will be included.
Resumo:
Wireless sensor networks (WSNs) differ from conventional distributed systems in many aspects. The resource limitation of sensor nodes, the ad-hoc communication and topology of the network, coupled with an unpredictable deployment environment are difficult non-functional constraints that must be carefully taken into account when developing software systems for a WSN. Thus, more research needs to be done on designing, implementing and maintaining software for WSNs. This thesis aims to contribute to research being done in this area by presenting an approach to WSN application development that will improve the reusability, flexibility, and maintainability of the software. Firstly, we present a programming model and software architecture aimed at describing WSN applications, independently of the underlying operating system and hardware. The proposed architecture is described and realized using the Model-Driven Architecture (MDA) standard in order to achieve satisfactory levels of encapsulation and abstraction when programming sensor nodes. Besides, we study different non-functional constrains of WSN application and propose two approaches to optimize the application to satisfy these constrains. A real prototype framework was built to demonstrate the developed solutions in the thesis. The framework implemented the programming model and the multi-layered software architecture as components. A graphical interface, code generation components and supporting tools were also included to help developers design, implement, optimize, and test the WSN software. Finally, we evaluate and critically assess the proposed concepts. Two case studies are provided to support the evaluation. The first case study, a framework evaluation, is designed to assess the ease at which novice and intermediate users can develop correct and power efficient WSN applications, the portability level achieved by developing applications at a high-level of abstraction, and the estimated overhead due to usage of the framework in terms of the footprint and executable code size of the application. In the second case study, we discuss the design, implementation and optimization of a real-world application named TempSense, where a sensor network is used to monitor the temperature within an area.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Considerable interest in renewable energy has increased in recent years due to the concerns raised over the environmental impact of conventional energy sources and their price volatility. In particular, wind power has enjoyed a dramatic global growth in installed capacity over the past few decades. Nowadays, the advancement of wind turbine industry represents a challenge for several engineering areas, including materials science, computer science, aerodynamics, analytical design and analysis methods, testing and monitoring, and power electronics. In particular, the technological improvement of wind turbines is currently tied to the use of advanced design methodologies, allowing the designers to develop new and more efficient design concepts. Integrating mathematical optimization techniques into the multidisciplinary design of wind turbines constitutes a promising way to enhance the profitability of these devices. In the literature, wind turbine design optimization is typically performed deterministically. Deterministic optimizations do not consider any degree of randomness affecting the inputs of the system under consideration, and result, therefore, in an unique set of outputs. However, given the stochastic nature of the wind and the uncertainties associated, for instance, with wind turbine operating conditions or geometric tolerances, deterministically optimized designs may be inefficient. Therefore, one of the ways to further improve the design of modern wind turbines is to take into account the aforementioned sources of uncertainty in the optimization process, achieving robust configurations with minimal performance sensitivity to factors causing variability. The research work presented in this thesis deals with the development of a novel integrated multidisciplinary design framework for the robust aeroservoelastic design optimization of multi-megawatt horizontal axis wind turbine (HAWT) rotors, accounting for the stochastic variability related to the input variables. The design system is based on a multidisciplinary analysis module integrating several simulations tools needed to characterize the aeroservoelastic behavior of wind turbines, and determine their economical performance by means of the levelized cost of energy (LCOE). The reported design framework is portable and modular in that any of its analysis modules can be replaced with counterparts of user-selected fidelity. The presented technology is applied to the design of a 5-MW HAWT rotor to be used at sites of wind power density class from 3 to 7, where the mean wind speed at 50 m above the ground ranges from 6.4 to 11.9 m/s. Assuming the mean wind speed to vary stochastically in such range, the rotor design is optimized by minimizing the mean and standard deviation of the LCOE. Airfoil shapes, spanwise distributions of blade chord and twist, internal structural layup and rotor speed are optimized concurrently, subject to an extensive set of structural and aeroelastic constraints. The effectiveness of the multidisciplinary and robust design framework is demonstrated by showing that the probabilistically designed turbine achieves more favorable probabilistic performance than those of the initial baseline turbine and a turbine designed deterministically.
Resumo:
Energy Conservation Measure (ECM) project selection is made difficult given real-world constraints, limited resources to implement savings retrofits, various suppliers in the market and project financing alternatives. Many of these energy efficient retrofit projects should be viewed as a series of investments with annual returns for these traditionally risk-averse agencies. Given a list of ECMs available, federal, state and local agencies must determine how to implement projects at lowest costs. The most common methods of implementation planning are suboptimal relative to cost. Federal, state and local agencies can obtain greater returns on their energy conservation investment over traditional methods, regardless of the implementing organization. This dissertation outlines several approaches to improve the traditional energy conservations models. Any public buildings in regions with similar energy conservation goals in the United States or internationally can also benefit greatly from this research. Additionally, many private owners of buildings are under mandates to conserve energy e.g., Local Law 85 of the New York City Energy Conservation Code requires any building, public or private, to meet the most current energy code for any alteration or renovation. Thus, both public and private stakeholders can benefit from this research. The research in this dissertation advances and presents models that decision-makers can use to optimize the selection of ECM projects with respect to the total cost of implementation. A practical application of a two-level mathematical program with equilibrium constraints (MPEC) improves the current best practice for agencies concerned with making the most cost-effective selection leveraging energy services companies or utilities. The two-level model maximizes savings to the agency and profit to the energy services companies (Chapter 2). An additional model presented leverages a single congressional appropriation to implement ECM projects (Chapter 3). Returns from implemented ECM projects are used to fund additional ECM projects. In these cases, fluctuations in energy costs and uncertainty in the estimated savings severely influence ECM project selection and the amount of the appropriation requested. A risk aversion method proposed imposes a minimum on the number of “of projects completed in each stage. A comparative method using Conditional Value at Risk is analyzed. Time consistency was addressed in this chapter. This work demonstrates how a risk-based, stochastic, multi-stage model with binary decision variables at each stage provides a much more accurate estimate for planning than the agency’s traditional approach and deterministic models. Finally, in Chapter 4, a rolling-horizon model allows for subadditivity and superadditivity of the energy savings to simulate interactive effects between ECM projects. The approach makes use of inequalities (McCormick, 1976) to re-express constraints that involve the product of binary variables with an exact linearization (related to the convex hull of those constraints). This model additionally shows the benefits of learning between stages while remaining consistent with the single congressional appropriations framework.
Resumo:
Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.
Resumo:
Combinatorial optimization is a complex engineering subject. Although formulation often depends on the nature of problems that differs from their setup, design, constraints, and implications, establishing a unifying framework is essential. This dissertation investigates the unique features of three important optimization problems that can span from small-scale design automation to large-scale power system planning: (1) Feeder remote terminal unit (FRTU) planning strategy by considering the cybersecurity of secondary distribution network in electrical distribution grid, (2) physical-level synthesis for microfluidic lab-on-a-chip, and (3) discrete gate sizing in very-large-scale integration (VLSI) circuit. First, an optimization technique by cross entropy is proposed to handle FRTU deployment in primary network considering cybersecurity of secondary distribution network. While it is constrained by monetary budget on the number of deployed FRTUs, the proposed algorithm identi?es pivotal locations of a distribution feeder to install the FRTUs in different time horizons. Then, multi-scale optimization techniques are proposed for digital micro?uidic lab-on-a-chip physical level synthesis. The proposed techniques handle the variation-aware lab-on-a-chip placement and routing co-design while satisfying all constraints, and considering contamination and defect. Last, the first fully polynomial time approximation scheme (FPTAS) is proposed for the delay driven discrete gate sizing problem, which explores the theoretical view since the existing works are heuristics with no performance guarantee. The intellectual contribution of the proposed methods establishes a novel paradigm bridging the gaps between professional communities.
Resumo:
A novel route to prepare highly active and stable N2O decomposition catalysts is presented, based on Fe-exchanged beta zeolite. The procedure consists of liquid phase Fe(III) exchange at low pH. By varying the pH systematically from 3.5 to 0, using nitric acid during each Fe(III)-exchange procedure, the degree of dealumination was controlled, verified by ICP and NMR. Dealumination changes the presence of neighbouring octahedral Al sites of the Fe sites, improving the performance for this reaction. The so-obtained catalysts exhibit a remarkable enhancement in activity, for an optimal pH of 1. Further optimization by increasing the Fe content is possible. The optimal formulation showed good conversion levels, comparable to a benchmark Fe-ferrierite catalyst. The catalyst stability under tail gas conditions containing NO, O2 and H2O was excellent, without any appreciable activity decay during 70 h time on stream. Based on characterisation and data analysis from ICP, single pulse excitation NMR, MQ MAS NMR, N2 physisorption, TPR(H2) analysis and apparent activation energies, the improved catalytic performance is attributed to an increased concentration of active sites. Temperature programmed reduction experiments reveal significant changes in the Fe(III) reducibility pattern with the presence of two reduction peaks; tentatively attributed to the interaction of the Fe-oxo species with electron withdrawing extraframework AlO6 species, causing a delayed reduction. A low-temperature peak is attributed to Fe-species exchanged on zeolitic AlO4 sites, which are partially charged by the presence of the neighbouring extraframework AlO6 sites. Improved mass transport phenomena due to acid leaching is ruled out. The increased activity is rationalized by an active site model, whose concentration increases by selectively washing out the distorted extraframework AlO6 species under acidic (optimal) conditions, liberating active Fe species.
Resumo:
The main objective of this PhD thesis is to optimize a specific multifunctional maritime structure for harbour protection and energy production, named Overtopping Breakwater for Energy Conversion (OBREC), developed by the team of the University of Campania. This device is provided with a sloping plate followed by a unique reservoir, which is linked with the machine room (where the energy conversion occurs) by means of a pipe passing through the crown wall, provided with a parapet on top of it. Therefore, the potential energy of the overtopping waves, collected inside the reservoir located above the still water level, is then converted by means of low – head turbines. In order to improve the understanding of the wave – structure interactions with OBREC, several methodologies have been used and combined together: i. analysis of recent experimental campaigns on wave overtopping discharges and pressures at the crown wall on small – scale OBREC cross sections, carried out in other laboratories by the team of the University of Campania; ii. new experiments on cross sections similar to the OBREC device, planned and carried out in the hydraulic lab at the University of Bologna in the framework of this PhD work; iii. numerical modelling with a 1 – phase incompressible fluid model IH – 2VOF, developed by the University of Cantabria, and with a 2 – phase incompressible fluid model OpenFOAM, both available from the literature; iv. numerical modelling with a new 2 – phase compressible fluid model developed in the OpenFOAM environment within this PhD work; v. analysis of the data gained from the monitoring of the OBREC prototype installation.
Resumo:
Several decision and control tasks in cyber-physical networks can be formulated as large- scale optimization problems with coupling constraints. In these "constraint-coupled" problems, each agent is associated to a local decision variable, subject to individual constraints. This thesis explores the use of primal decomposition techniques to develop tailored distributed algorithms for this challenging set-up over graphs. We first develop a distributed scheme for convex problems over random time-varying graphs with non-uniform edge probabilities. The approach is then extended to unknown cost functions estimated online. Subsequently, we consider Mixed-Integer Linear Programs (MILPs), which are of great interest in smart grid control and cooperative robotics. We propose a distributed methodological framework to compute a feasible solution to the original MILP, with guaranteed suboptimality bounds, and extend it to general nonconvex problems. Monte Carlo simulations highlight that the approach represents a substantial breakthrough with respect to the state of the art, thus representing a valuable solution for new toolboxes addressing large-scale MILPs. We then propose a distributed Benders decomposition algorithm for asynchronous unreliable networks. The framework has been then used as starting point to develop distributed methodologies for a microgrid optimal control scenario. We develop an ad-hoc distributed strategy for a stochastic set-up with renewable energy sources, and show a case study with samples generated using Generative Adversarial Networks (GANs). We then introduce a software toolbox named ChoiRbot, based on the novel Robot Operating System 2, and show how it facilitates simulations and experiments in distributed multi-robot scenarios. Finally, we consider a Pickup-and-Delivery Vehicle Routing Problem for which we design a distributed method inspired to the approach of general MILPs, and show the efficacy through simulations and experiments in ChoiRbot with ground and aerial robots.
Resumo:
The present thesis is focused on wave energy, which is a particular kind of ocean energy, and is based on the activity carried out during the EU project SEA TITAN. The main scope of this work is the design of a power electronic section for an innovative wave energy extraction system based on a switched-reluctance machine. In the first chapter, the general features of marine wave energy harvesting are treated. The concept of Wave Energy Converter (WEC) is introduced as well as the mathematical description of the waves, their characterization and measurement, the WEC classification, the operating principles and the standardization framework. Also, detailed considerations on the environmental impact are presented. The SEA TITAN project is briefly described. The second chapter is dedicated to the technical issues of the SEA TITAN project, such as the operating principle, the performance optimization carried out in the project, the main innovations as well as interesting demonstrations on the behavior of the generator and its control. In the third chapter, the power electronics converters of SEA TITAN are described, and the design choices, procedures and calculations are shown, with a further insight into the application given by analyzing the MATLAB Simulink model of the system and its control scheme. Experimental tests are reported in the fourth chapter, with graphs and illustrations of the power electronic apparatus interfaced with the real machine. Finally, the conclusion in the fifth chapter offers a global overview of the project and opens further development pathways.