945 resultados para Optical pulses


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n(2)) and two-photon absorption coefficient (beta). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n(2) and beta. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723829]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear index of refraction (n(2)) and the two-photon absorption coefficient (beta) of water-based ferrofluids made of magnetite nanocrystals of different sizes and with different coatings have been measured through the Z-scan technique, with ultrashort (femtoseconds) laser pulses. Their third-order susceptibility is calculated from the values of n(2) and beta. The influence of different particles' coatings and sizes on these nonlinear optical properties are investigated. The values of n(2) and beta depend more significantly on the nanoparticles' size than on the particular coating. We observe a decrease of beta as the nanoparticles' diameters decrease, although the optical gap is found to be the same for all samples. The results are interpreted considering modifications in the electronic orbital shape due to the particles' nanosize effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A spatial, electro-optical autocorrelation (EOA) interferometer using the vertically polarized lobes of coherent transition radiation (CTR) has been developed as a single-shot electron bunch length monitor at an optical beam port downstream the 100 MeV preinjector LINAC of the Swiss Light Source. This EOA monitor combines the advantages of step-scan interferometers (high temporal resolution) [D. Mihalcea et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006) and T. Takahashi and K. Takami, Infrared Phys. Technol. 51, 363 (2008)] and terahertz-gating technologies [U. Schmidhammer et al., Appl. Phys. B: Lasers Opt. 94, 95 (2009) and B. Steffen et al., Phys. Rev. ST Accel. Beams 12, 032802 (2009)] (fast response), providing the possibility to tune the accelerator with an online bunch length diagnostics. While a proof of principle of the spatial interferometer was achieved by step-scan measurements with far-infrared detectors, the single-shot capability of the monitor has been demonstrated by electro-optical correlation of the spatial CTR interference pattern with fairly long (500 ps) neodymium-doped yttrium aluminum garnet (Nd:YAG) laser pulses in a ZnTe crystal. In single-shot operation, variations of the bunch length between 1.5 and 4 ps due to different phase settings of the LINAC bunching cavities have been measured with subpicosecond time resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A physical random number generator based on the intrinsic randomness of quantum mechanics is described. The random events are realized by the choice of single photons between the two outputs of a beamsplitter. We present a simple device, which minimizes the impact of the photon counters’ noise, dead-time and after pulses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that a single-layer antireflection coating on a THz source of high refractive index can substantially increase the transmission of emitted THz pulses. Calculations indicate that the optimum coating thickness depends on the exact shape of the generated THz waveform and whether the transmitted waveform is to be optimized for the highest peak (temporal) amplitude, peak spectral amplitude, or pulse energy. We experimentally demonstrate a 15% increase in peak amplitude, a 33% increase in peak spectral amplitude, and a 48% increase in energy for a 100 μm thick fused silica AR coating on a lithium niobate crystal used as THz emitter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies of Schwinger pair production have demonstrated that the asymptotic particle spectrum is extremely sensitive to the applied field profile. We extend the idea of the dynamically assisted Schwinger effect from single pulse profiles to more realistic field configurations to be generated in an all-optical experiment searching for pair creation. We use the quantum kinetic approach to study the particle production and employ a multi-start method, combined with optimal control theory, to determine a set of parameters for which the particle yield in the forward direction in momentum space is maximized. We argue that this strategy can be used to enhance the signal of pair production on a given detector in an experimental setup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Selective retina therapy (SRT) is a novel treatment for retinal pathologies, solely targeting the retinal pigment epithelium (RPE). During SRT, the detection of an immediate tissue reaction is challenging as tissue effects remain limited to intracellular RPE photodisruption. Time-resolved ultra-high axial resolution optical coherence tomography (OCT) is thus evaluated for the monitoring of dynamic optical changes at and around the RPE during SRT. Methods: An experimental OCT system with an ultra-high axial resolution of 1.78 µm was combined with an SRT system and time-resolved OCT M-scans of the target area were recorded from four patients undergoing SRT. OCT scans were analyzed and OCT morphology was correlated with findings in fluorescein angiography, fundus photography and cross-sectional OCT. Results: In cases where the irradiation caused RPE damage proven by fluorescein angiography, the lesions were well discernible in time-resolved OCT images but remained invisible in fundus photography and cross-sectional OCT acquired after treatment. If RPE damage was introduced, all applied SRT pulses led to detectable signal changes in the time-resolved OCT images. The extent of optical signal variation seen in the OCT data appeared to scale with the applied SRT pulse energy. Conclusion: The first clinical results proved that successful SRT irradiation induces detectable changes in the OCT M-scan signal while it remains invisible in conventional ophthalmoscopic imaging. Thus, real-time high-resolution OCT is a promising modality to monitor and analyze tissue effects introduced by selective retina therapy and may be used to guide SRT in an automatic feedback mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a new attosecond pulse reconstruction modality which uses an algorithm that is derived from ptychography. In contrast to other methods, energy and delay sampling are not correlated, and as a result, the number of electron spectra to record is considerably smaller. Together with the robust algorithm, this leads to a more precise and fast convergence of the reconstruction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to the fact that a metro network market is very cost sensitive, direct modulated schemes appear attractive. In this paper a CWDM (Coarse Wavelength Division Multiplexing) system is studied in detail by means of an Optical Communication System Design Software; a detailed study of the modulated current shape (exponential, sine and gaussian) for 2.5 Gb/s CWDM Metropolitan Area Networks is performed to evaluate its tolerance to linear impairments such as signal-to-noise-ratio degradation and dispersion. Point-to-point links are investigated and optimum design parameters are obtained. Through extensive sets of simulation results, it is shown that some of these shape pulses are more tolerant to dispersion when compared with conventional gaussian shape pulses. In order to achieve a low Bit Error Rate (BER), different types of optical transmitters are considered including strongly adiabatic and transient chirp dominated Directly Modulated Lasers (DMLs). We have used fibers with different dispersion characteristics, showing that the system performance depends, strongly, on the chosen DML?fiber couple.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a previously reported logic cell structure (see SPIE, vol. 2038, p. 67-77, 1993), the two types of cells present at the inner and ganglion cell layers of the vertebrate retina and their intracellular response, as well as their connections with each other, have been simulated. These cells are amacrines and ganglion cells. The main scheme of the authors' configuration is shown in a figure. These two types of cells, as well as some of their possible interconnections, have been implemented with the authors' previously reported optical-processing element. As it has been shown, the authors' logic structure is able to process two optical input binary signals, being the output two logical functions. Moreover, if a delayed feedback from one of the two possible outputs to one or both of the inputs is introduced, a very different behaviour is obtained. Depending on the value of the time delay, an oscillatory output can be obtained from a constant optical input signal. Period and length pulses are dependent on delay values, both external and internal, as well as on other control signals. Moreover, a chaotic behaviour can be obtained too under certain conditions

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method of opto-optical modulation in liquid crystals is reported. An Ar+-laser beam is employed to modulate a second He–Ne laser. The highest frequency achieved was 1.5 × 103 pulses per second with input modulating powers smaller than 10 mW. A homeotropic N-(p-methoxybenzylidene)-p-butylaniline liquid-crystal cell was employed as the nonlinear medium.