988 resultados para Optical emission spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinctive characteristic of silver in oxygen incorporation of oxide thin films during pulsed laser ablation has been discovered. Optical emission spectroscopy studies of laser-induced plume of Ag-target indicates the presence of AgO species whose concentration increases with an increase in oxygen partial pressure. The formation of AgO in laser-plume has been found to be very useful for the realization of high temperature superconducting YBa2Cu3O7-delta (YBCO) and giant magnetoresistive La0.7MnO3-delta (LMO) thin films with dramatically superior quality if the target materials contained a small amount of silver. The improvement in the quality of these films is brought about by the supply of atomic oxygen to oxide lattices during their formation. This becomes possible due to the fact that Ag, after it is ablated with other constituent materials in the target, gets moderately oxidized in an oxygen atmosphere and the oxidized species dissociate back into Ag and nascent O at the substrate surface. The nascent oxygen is very highly reactive and is easily assimilated into the lattice of these compounds. (C) 1997 Elsevier Science S.A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of the processes in facing targets sputtering of multicomponent oxide films is presented. The novel configuration of the process exhibits an enhanced ionization efficiency. Discharge diagnostics performed using optical emission spectroscopy revealed strong dependence of plasma parameters on process conditions. Numerical simulation based on thermalization and diffusion of sputtered atoms has been performed to estimate the transport efficiency in off-axis mode. Composition, structure and epitaxial quality of YBa2Cu3O7-x films prepared was found to be strongly dependent on atomic flux ratios (of Cu/Y and Ba/Y) arriving at the substrate, resputtering effect and phase stability of YBa2Cu3O7-x These studies have been shown to be useful in understanding the complex processes that occur in sputtering of multicomponent films. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is increasing interest in the use of nanoparticles as fillers in polymer matrices to develop biomaterials which mimic the mechanical, chemical and electrical properties of bone tissue for orthopaedic applications. The objective of this study was to prepare poly(epsilon-caprolactone) (PCL) nanocomposites incorporating three different perovskite ceramic nanoparticles, namely, calcium titanate (CT), strontium titanate (ST) and barium titanate (BT). The tensile strength and modulus of the composites increased with the addition of nanoparticles. Scanning electron microscopy indicated that dispersion of the nanoparticles scaled with the density of the ceramics, which in turn played an important role in determining the enhancement in mechanical properties of the composite. Dielectric spectroscopy revealed improved permittivity and reduced losses in the composites when compared to neat PCL. Nanofibrous scaffolds were fabricated via electrospinning. Induction coupled plasma-optical emission spectroscopy indicated the release of small quantities of Ca+2, Sr+2, Ba+2 ions from the scaffolds. Piezo-force microscopy revealed that BT nanoparticles imparted piezoelectric properties to the scaffolds. In vitro studies revealed that all composites support osteoblast proliferation. Expression of osteogenic genes was enhanced on the nanocomposites in the following order: PCL/CT>PCL/ST>PCL/BT>PCL. This study demonstrates that the use of perovskite nanoparticles could be a promising technique to engineer better polymeric scaffolds for bone tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An industrial, confined, dual frequency, capacitively coupled, radio-frequency plasma etch reactor Exelan®, Lam Research has been modified for spatially resolved optical measurements. Space and phase resolved optical emission spectroscopy yields insight into the dynamics of the discharge. A strong coupling of the two frequencies is observed in the emission profiles. Consequently, the ionization dynamics, probed through excitation, is determined by both frequencies. The control of plasma density by the high frequency is, therefore, also influenced by the low frequency. Hence, separate control of plasma density and ion energy is rather complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reliable measurement of the electron energy distribution function (EEDF) of plasmas is one of the most important subjects of plasma diagnostics, because this piece of information is the key to understand basic discharge mechanisms. Specific problems arise in the case of RF-excited plasmas, since the properties of electrons are subject to changes on a nanosecond time scale and show pronounced spatial anisotropy. We report on a novel spectroscopic method for phase- and space-resolved measurements of the electron energy distribution function of energetic (> 12 eV) electrons in RF discharges. These electrons dominate excitation and ionization processes and are therefore of particular interest. The technique is based on time-dependent measurements during the RF cycle of excited-state populations of rare gases admixed in small fractions. These measurements yield � in combination with an analytical model � detailed information on the excitation processes. Phase-resolved optical emission spectroscopy allows us to overcome the difficulties connected with the very low densities (107�109 cm�3) and the transient character of the electrons in the sheath region. The EEDF of electrons accelerated in the sheath region can be described by a shifted Maxwellian with a drift velocity component in direction of the electric field. The method yields the high-energy tail of the EEDF on an absolute scale. The applicability of the method is demonstrated at a capacitively coupled RF discharge in hydrogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic neutral loop discharges (NLDs) can be operated at significantly lower pressures than conventional radio-frequency (rf) inductively coupled plasmas (ICPs). These low pressure conditions are favourable for technological applications, in particular anisotropic etching. An ICP–NLD has been designed providing excellent diagnostics access for detailed investigations of fundamental mechanisms. Spatially resolved Langmuir probe measurements have been performed in the plasma production region (NL region) as well as in the remote application region downstream from the NL region. Depending on the NL gradient two different operation modes have been observed exhibiting different opportunities for control of plasma uniformity. The efficient operation at comparatively low pressures results in ionization degrees exceeding 1%. In this regime neutral dynamics has to be considered and can influence neutral gas and process uniformity. Neutral gas depletion through elevated gas temperatures and high ionization rates have been quantified. At pressures above 0.1 Pa, gas heating is the dominant depletion mechanism. At lower pressures neutral gas is predominantly depleted through high ionization rates and rapid transport of ions by ambipolar diffusion along the magnetic field lines. Non-uniform profiles of the ionization rate can, therefore, result in localized neutral gas depletion and non-uniform processing. We have also investigated the electron dynamics within the radio-frequency cycle using phase resolved optical emission spectroscopy and Thomson scattering. In these measurements electron drift phenomena along the NL torus have been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrocarbon nanoparticles with diameters between 10 and 30 nanometres are created in a low pressure plasma combining capacitive and inductive power coupling. The particles are generated in the capacitive phase of the experiment and stay confined in the plasma in the inductive phase. The presence of these embedded particles induces a rotation of a particle-free region (void) around the symmetry axis of the reactor. The phenomenon is analysed using optical emission spectroscopy both line integrated and spatially resolved via an intensified charge coupled device camera. From these data, electron temperatures and densities are deduced. We find that the rotation of the void is driven by a tangential component of the ion drag force induced by an external static magnetic field. Two modes are observed: a fast rotation of the void in the direction opposite to that of the tangential component and a slow rotation in the same direction. The rotation speed decreases linearly with the size of the particles. In the fast mode the dependence on the applied magnetic field is weak and consequently the rotation speed can serve as a monitor to detect particle sizes in low temperature plasmas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of high energetic electrons (>= 11.7 eV) in a modified industrial confined dual-frequency capacitively coupled RF discharge (Exelan, Lam Research Inc.), operated at 1.937 MHz and 27.118 MHz, is investigated by means of phase resolved optical emission spectroscopy. Operating in a He-O-2. plasma with small rare gas admixtures the emission is measured, with one-dimensional spatial resolution along the discharge axis. Both the low and high frequency RF cycle are resolved. The diagnostic is based on time dependent measurements of the population densities of specifically chosen excited rare gas states. A time dependent model, based on rate equations, describes the dynamics of the population densities of these levels. Based on this model and the comparison of the excitation of various rare gas states, with different excitation thresholds, time and space resolved electron temperature, propagation velocity and qualitative electron density as well as electron energy distribution functions are determined. This information leads to a better understanding of the dual-frequency sheath dynamics and shows, that separate control of ion energy and electron density is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sheath dynamics in the afterglow of a pulsed inductively coupled plasma, operated in hydrogen, is investigated. It is found that the sheath potential does not fully collapse in the early post-discharge. Time resolved measurements of the positive ion flux in a hydrogen plasma, using a mass resolved ion energy analyser, reveal that a constant 2 eV mean ion energy persists for several hundred micro-seconds in the afterglow. The presence of a finite sheath potential is explained by super-elastic collisions between vibrationally excited hydrogen molecules and electrons in the afterglow, leading to an electron temperature of about 0.5 eV. Plasma density decay times measured using both the mass resolved energy analyser and a Langmuir probe are in good agreement. Vibrational temperatures measured using optical emission spectroscopy support the theory of electron heating through super-elastic collisions with vibrationally excited hydrogen molecules. Measurements are also supported by numerical simulations and modelling results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase resolved optical emission spectroscopy, with high temporal resolution, shows that wave-particle interactions play a fundamental role in sustaining capacitively coupled rf plasmas. The measurements are in excellent agreement with a simple particle-in-cell simulation. Excitation and ionization mechanisms are dominated by beam-like electrons, energized through the advancing and retreating electric fields of the rf sheath. The associated large-amplitude electron waves, driven by a form of two-stream instability, result in power dissipation through electron trapping and phase mixing. (c) 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes of the electron dynamics during the mode transition (E- to H-mode) in a hydrogen radio-frequency (rf) inductively coupled plasma are investigated using space and phase resolved optical emission spectroscopy. The E- mode is characterized through relatively weak optical emission which is strongly modulated on a nanosecond time scale during the rf-cycle, with one pronounced maximum per cycle. The modulation in H-mode, with twice the rf-frequency, is significantly weaker while the emission intensities are about two orders of magnitude higher. In particular the transition between these two modes is studied under variations of rf-power input and gas pressure. Characteristic spatio-temporal structures are observed and can be understood in the frame of a simple model combining both coupling mechanisms in the transition regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge at ambient pressure. It operates with a noble base gas and a percentage-volume admixture of a molecular gas. Applications of the discharge are mainly based on reactive species in the effluent. The effluent region of a discharge operated in helium with an oxygen admixture has been investigated. The optical emission from atomic oxygen decreases with distance from the discharge but can still be observed several centimetres in the effluent. Ground state atomic oxygen, measured using absolutely calibrated two-photon laser induced fluorescence spectroscopy, shows a similar behaviour. Detailed understanding of energy transport mechanisms requires investigations of the discharge volume and the effluent region. An atmospheric pressure plasma jet has been designed providing excellent diagnostics access and a simple geometry ideally suited for modelling and simulation. Laser spectroscopy and optical emission spectroscopy can be applied in the discharge volume and the effluent region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen ions (H+, H-2(+) and H-3(+)) are produced in a magnetically confined inductively coupled radio frequency plasma. Ions are accelerated in the plasma boundary sheath potential, of several hundred volts, in front of a biased metal electrode immersed in the plasma. Backscattered hyperthermal hydrogen atoms are investigated by optical emission spectroscopy and an energy-resolved mass spectrometer. Ionisation of fast neutrals through electron stripping of atoms in the plasma allows energy analysis of the resulting ions. Thereby, the energy distribution function of the hyperthermal atoms can be deduced. The energy spectra can be explained as a superposition of individual spectra of the various ion species. The measured spectra also shows contributions of negative ions created at the electrode surface. In addition to experimental measurements, simulations of the neutral flux of backscattered atoms are carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.