980 resultados para Open water swimming
Resumo:
Time series of brightness temperatures (T(B)) from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) are examined to determine ice phenology variables on the two largest lakes of northern Canada: Great Bear Lake (GBL) and Great Slave Lake (GSL). T(B) measurements from the 18.7, 23.8, 36.5, and 89.0 GHz channels (H- and V- polarization) are compared to assess their potential for detecting freeze-onset/melt-onset and ice-on/ice-off dates on both lakes. The 18.7 GHz (H-pol) channel is found to be the most suitable for estimating these ice dates as well as the duration of the ice cover and ice-free seasons. A new algorithm is proposed using this channel and applied to map all ice phenology variables on GBL and GSL over seven ice seasons (2002-2009). Analysis of the spatio-temporal patterns of each variable at the pixel level reveals that: (1) both freeze-onset and ice-on dates occur on average about one week earlier on GBL than on GSL (Day of Year (DY) 318 and 333 for GBL; DY 328 and 343 for GSL); (2) the freeze-up process or freeze duration (freeze-onset to ice-on) takes a slightly longer amount of time on GBL than on GSL (about 1 week on average); (3) melt-onset and ice-off dates occur on average one week and approximately four weeks later, respectively, on GBL (DY 143 and 183 for GBL; DY 135 and 157 for GSL); (4) the break-up process or melt duration (melt-onset to ice-off) lasts on average about three weeks longer on GBL; and (5) ice cover duration estimated from each individual pixel is on average about three weeks longer on GBL compared to its more southern counterpart, GSL. A comparison of dates for several ice phenology variables derived from other satellite remote sensing products (e.g. NOAA Interactive Multisensor Snow and Ice Mapping System (IMS), QuikSCAT, and Canadian Ice Service Database) show that, despite its relatively coarse spatial resolution, AMSR-E 18.7 GHz provides a viable means for monitoring of ice phenology on large northern lakes.
Resumo:
Arctic sea ice has declined and become thinner and younger (more seasonal) during the last decade. One consequence of this is that the surface energy budget of the Arctic Ocean is changing. While the role of surface albedo has been studied intensively, it is still widely unknown how much light penetrates through sea ice into the upper ocean, affecting sea-ice mass balance, ecosystems, and geochemical processes. Here we present the first large-scale under-ice light measurements, operating spectral radiometers on a remotely operated vehicle (ROV) under Arctic sea ice in summer. This data set is used to produce an Arctic-wide map of light distribution under summer sea ice. Our results show that transmittance through first-year ice (FYI, 0.11) was almost three times larger than through multi-year ice (MYI, 0.04), and that this is mostly caused by the larger melt-pond coverage of FYI (42 vs. 23%). Also energy absorption was 50% larger in FYI than in MYI. Thus, a continuation of the observed sea-ice changes will increase the amount of light penetrating into the Arctic Ocean, enhancing sea-ice melt and affecting sea-ice and upper-ocean ecosystems.
Resumo:
A multi-proxy study including sedimentological, mineralogical, biogeochemical and micropaleontological methods was conducted on sediment core PS69/849-2 retrieved from Burton Basin, MacRobertson Shelf, East Antarctica. The goal of this study was to depict the deglacial and Holocene environmental history of the MacRobertson Land-Prydz Bay region. A special focus was put on the timing of ice-sheet retreat and the variability of bottom-water formation due to sea ice formation through the Holocene. Results from site PS69/849-2 provide the first paleo-environmental record of Holocene variations in bottom-water production probably associated to the Cape Darnley polynya, which is the second largest polynya in the Antarctic. Methods included end-member modeling of laser-derived high-resolution grain size data to reconstruct the depositional regimes and bottom-water activity. The provenance of current-derived and ice-transported material was reconstructed using clay-mineral and heavy-mineral analysis. Conclusions on biogenic production were drawn by determination of biogenic opal and total organic carbon. It was found that the ice shelf front started to retreat from the site around 12.8 ka BP. This coincides with results from other records in Prydz Bay and suggests warming during the early Holocene optimum next to global sea level rise as the main trigger. Ice-rafted debris was then supplied to the site until 5.5 cal. ka BP, when Holocene global sea level rise stabilized and glacial isostatic rebound on MacRobertson Land commenced. Throughout the Holocene, three episodes of enhanced bottom-water activity probably due to elevated brine rejection in Cape Darnley polynya occured between 11.5 and 9 cal. ka BP, 5.6 and 4.5 cal. ka BP and since 1.5 cal. ka BP. These periods are related to shifts from warmer to cooler conditions at the end of Holocene warm periods, in particular the early Holocene optimum, the mid-Holocene warm period and at the beginning of the neoglacial. In contrast, between 7.7 and 6.7 cal. ka BP, brine rejection shut down, maybe owed to warm conditions and pronounced open-water intervals.
Resumo:
Two global environmental issues, climate change and contamination by persistent organic pollutants, represent major concerns for arctic ecosystems. Yet, it is unclear how these two stressors interact in the Arctic. For instance, the influence of climate-associated changes in food web structure on exposure to pollutants within arctic ecosystems is presently unknown. Here, we report on recent changes in feeding ecology (1991-2007) in polar bears (Ursus maritimus) from the western Hudson Bay subpopulation that have resulted in increases in the tissue concentrations of several chlorinated and brominated contaminants. Differences in timing of the annual sea ice breakup explained a significant proportion of the diet variation among years. As expected from climate change predictions, this diet change was consistent with an increase in the consumed proportions of open water-associated seal species compared to ice-associated seal species in years of earlier sea ice breakup. Our results demonstrate that climate change is a modulating influence on contaminants in this polar bear subpopulation and may pose an additional and previously unidentified threat to northern ecosystems through altered exposures to contaminants.
Resumo:
This study focuses on sedimentological investigations of sediment cores recovered during the international Arctic'91, expeditions with the German research ice breaker RV "Polarstern" to the European sector of the Arctic Ocean. Here, we deduce the last glacial/interglacial changes in transport mechanism and sedimentation from the clay mineral group smectite. We choose the smectites as an example of how sediment mineralogy can be linked with particular source regions (the Kara and Laptev seas), distinct transport mechanism (sea ice and surface currents) and sedimentation processes. Smectite contents in Arctic sediments discussed for two time slices, including the Last Glacial Maximum (LGM), and the last deglaciation (Termination I), reveal the highest variability subsequent to the retreat of the Eurasian ice sheets. Our results show that smectite anomalies in the Eurasian Basin are associated with distinct meltwater pulses and occurred around 13.5-13.0 14C ka B.P. Compelling evidence is provided that these anomalies are deduced from sea-ice entrained sediments from the eastern Kara Sea that entered the Arctic Ocean after ice-sheet break-up and eventually flooding of the Kara Sea. We propose that smectite anomalies in sediments of the eastern Arctic Ocean can be utilized to identify deglacial events and to help decipher configurations of the Eurasian ice sheets. The identification of smectite maxima along the modern sea-ice edge in the Eurasian Basin further indicates biologically enhanced sedimentation from melting sea ice allowing the reconstruction of seasonally open water in the region. Hence, considering the poor preservation conditions of primary paleoceanographic proxies in the Arctic Ocean, the clay mineral contents, particularly the smectite group, may be one alternative tool for paleoclimatic reconstruction in the Eurasian Basin.
Resumo:
There is a paucity of information on abundance, densities, and habitat selection of narwhals Monodon monoceros in the offshore pack ice of Baffin Bay, West Greenland, despite the critical importance of winter foraging regions and considerable sea ice declines in the past decades. We conducted a double-platform visual aerial survey over a narwhal wintering ground to obtain pack ice densities and develop the first fully corrected abundance estimate using point conditional mark-recapture distance sampling. Continuous video recording and digital images taken along the trackline allowed for in situ quantification of winter narwhal habitat and for the estimation of fine-scale narwhal habitat selection and habitat-specific sighting probabilities. Abundance at the surface was estimated at 3484 (coefficient of variation [CV] = 0.46) including whales missed by observers. The fully corrected abundance of narwhals was 18 044 (CV = 0.46), or approximately one-quarter of the entire Baffin Bay population. The narwhal wintering ground surveyed (~9500 km**2) had 2.4 to 3.2% open water based on estimates from satellite imagery (NASA Moderate Resolution Imaging Spectroradiometer) and 1565 digital photographic images collected on the trackline. Thus, the ~18 000 narwhals had access to 233 km**2 of open water, resulting in an average density of ~77 narwhals/km**2 open water. Narwhal sighting probability near habitats with <10% or 10 to 50% open water was significantly higher than sighting probability in habitats with >50% open water, suggesting narwhals select optimal foraging areas in dense pack ice regardless of open water availability. This study provides the first quantitative ecological data on densities and habitat selection of narwhals in pack ice foraging regions that are rapidly being altered with climate change.
Resumo:
On the basis of 52 sediment cores, analyzed and dated at high resolution, the paleoceanography and climate of the Last Glacial Maximum (LGM) were reconstructed in detail for the Fram Strait and the eastern and central Arctic Ocean. Sediment composition and stable isotope data suggest three distinct paleoenvironments: (1) a productive region in the eastern to central Fram Strait and along the northern Barents Sea continental margin characterized by Atlantic Water advection, frequent open water conditions, and occasional local meltwater supply and iceberg calving from the Barents Sea Ice Sheet; (2) an intermediate region in the southwestern Eurasian Basin (up to 84-85°N) and the western Fram Strait characterized by subsurface Atlantic Water advection and recirculation, a moderately high planktic productivity, and a perennial ice cover that breaks up only occasionally; and (3) a central Arctic region (north of 85°N in the Eurasian Basin) characterized by a low-salinity surface water layer and a thick ice cover that strongly reduces bioproduction and bulk sedimentation rates. Although the total inflow of Atlantic Water into the Arctic Ocean may have been reduced during the LGM, its impact on ice coverage and halocline structure in the Fram Strait and southwestern Eurasian Basin was strong.
Resumo:
Excavations were carried out in a Late Palaeolithic site in the community of Bad Buchau-Kappel between 2003 and 2007. Archaeological investigations covered a total of more than 200 m**2. This site is the product of what likely were multiple occupations that occurred during the Late Glacial on the Federsee shore in this location. The site is situated on a mineral ridge that projected into the former Late Glacial lake Federsee. This beach ridge consists of deposits of fine to coarse gravel and sand and was surrounded by open water, except for a connection to the solid shore on the south. A lagoon lay between the hook-shaped ridge and the shore of the Federsee. This exposed location provided optimal access to the water of the lake. In addition, the small lagoon may have served as a natural harbor for landing boats or canoes. Sedimentological and palynological investigations document the dynamic history of the location between 14,500 and 11,600 years before present (cal BP). Evidence of the deposition of sands, gravels and muds since the Bølling Interstadial is provided by stratigraphic and palynological analyses. The major occupation occurred in the second half of the Younger Dryas period. Most of the finds were located on or in the sediments of the ridge; fewer finds occurred in the surrounding mud, which was also deposited during the Younger Dryas. Direct dates on some bone fragments, however, demonstrate that intermittent sporadic occupations also took place during the two millennia of the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked during the Younger Dryas and redeposited in the mud. A 14C date from one bone of 11,600 years ago (cal BP) places the Late Palaeolithic occupation of the ridge at the very end of the Younger Dryas, which is in agreement with stratigraphic observations. Stone artifacts, numbering 3,281, comprise the majority of finds from the site. These include typical artifacts of the Late Palaeolithic, such as backed points, short scrapers, and small burins. There are no bipointes or Malaurie-Points, which is in accord with the absolute date of the occupation. A majority of the artifacts are made from a brown chert that is obtainable a few kilometers north of the site in sediments of the Graupensandrinne. Other raw materials include red and green radiolarite that occur in the fluvioglacial gravels of Oberschwaben, as well as quartzite and lydite. The only non-local material present is a few artifacts of tabular chert from the region near Kelheim in Bavaria. A unique find consists of two fragments of a double-barbed harpoon made of red deer antler, which was found in the Younger Dryas mud. It is likely, but not certain, that this find belongs to the same assemblage as the numerous stone artifacts. Although not numerous, animal bones were also found in the excavations. Most of them lay in sediments of the Younger Dryas, but several 14C dates place some of these bones in earlier periods, including the Meiendorf, Bølling, and Allerød Interstadials. These bones were reworked by water and redeposited in mud sediments during the Younger Dryas. As a result, it is difficult to attribute individual bones to particular chronological positions without exact dates. Species that could be identified include wild horse (Equus spec.), moose or elk (Alces alces), red deer (Cervus elaphus), roe deer (Capreolus capreolus), aurochs or bison (Bos spec.), wild boar (Sus scrofa), as well as birds and fish, including pike (Esox Lucius).
Resumo:
A novel and promising biomarker proxy for reconstruction of Arctic sea ice conditions was developed and is based on the determination of a highly branched isoprenoid with 25 carbons (IP25). IP25 records have been restricted to the last 150 kyr BP. We present a biomarker record from Ocean Drilling Program (ODP) Site 912, going back to the Pliocene-Pleistocene boundary and indicating that sea ice of variable extent occurred in the Fram Strait/southern Yermak Plateau area at least since about 2.2 Ma. Furthermore, our data support the idea that a combination of IP25 and open water, phytoplankton biomarker data ("PIP25 index") may give a more reliable and quantitative estimate of past sea ice cover (at least for the study area). The study reveals that the novel IP25/PIP25 biomarker approach has potential for semi-quantitative paleo-sea ice studies covering the entire Quaternary and could motivate further detailed high resolution research on ODP/IODP material using this proxy.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
In the years 2002, 2003 and 2004 we collected samples of macroinvertebrates on a total of 36 occasions in Badacsony bay, in areas of open water (in the years 2003 and 2004 reed-grassy) as well as populated by reed (Phragmites australis) and cattail (Typha angustifolia). Samples were taken using a stiff hand net. The sampling site includes three microhabitats differentiated only by the aquatic plants inhabiting these areas. Our data was gathered from processing 208 individual samples. The quantity of macroinvertebrates is represented by biovolume value based on volume estimates. We can identify taxa in abundant numbers found in all water types and ooze; as well as groups associated with individual microhabitats with various aquatic plants. We can observe a notable difference between the years in the volume of invertebrate macrofauna caused by the drop of water level, and the multiplication of submerged macrophytes. There are smaller differences between the samples taken in reeds and cattail stands. In the second half of 2003 – which was a year of drought – the Najas marina appeared in open waters and allowed to support larger quantities of macroinvertebrates. In 2004 with higher water levels, the Potamogeton perfoliatus occurring in the same area has had an even more significant effect. This type of reed-grass may support the most macroinvertebrates during the summer. From the aspect of diversity relations we may suspect different characteristics. The reeds sampling site proved to be the richest, while the cattail microhabitat is close behind, open water (with submerged macrophytes) is the least diverse microhabitat.
Resumo:
In 2002, 2003 and 2004, we took macoinvertebrate samples on a total of 36 occasions at the Badacsony bay of Lake Balaton. Our sampling site was characterised by areas of open water (in 2003 and 2004 full of reed-grass) as well as by areas covered by common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia). Samples were taken both from water body and benthic ooze by use of a stiff hand net. We have gained our data from processing 208 individual samples. We took samples frequently from early spring until late autumn for a deeper understanding of the processes of seasonal dynamics. The main seasonal patterns and temporal changes of diversity were described. We constructed a weather-dependent simulation model of the processes of seasonal dynamics in the interest of a possible further utilization of our data in climate change research. We described the total number of individuals, biovolume and diversity of all macroinvertebrate species with a single index and used the temporal trends of this index for simulation modelling. Our discrete deterministic model includes only the impact of temperature, other interactions might only appear concealed. Running the model for different climate change scenarios it became possible to estimate conditions for the 2070-2100 period. The results, however, should be treated very prudently not only because our model is very simple but also because the scenarios are the results of different models.
Resumo:
This study examined the occurrence of pharmaceuticals and personal care products (PPCP's) in surface waters of Florida and their potential to be use as indicators of wastewater contamination. Previous studies have shown that elimination of pharmaceuticals in municipal sewage treatment plants is often incomplete. Aquatic ecosystems are under increased stress from human activities, particularly in heavily populated areas. The purpose of this study was to find an ideal indicator for wastewater. The applied methods, GC/MS and LC/MS, were suitable for the determination of pharmaceuticals and personal care products in aqueous environmental samples to the lower parts-per-trillion (ng/L) level. As a result of this study a snapshot view of the occurrence of pharmaceuticals and personal care products in south Florida was produced. PPCP's were commonly detected in coastal environments of South Florida at relatively low concentrations. In general, PPCP's were higher inside the canals and contained bodies of water than in open water systems. Caffeine was successfully used to describe impacted versus pristine locations. However, no particular correlation was observed among caffeine and other traditional water quality parameters.
Resumo:
Zooplankton was studied on eight stations in the marginal ice zone (MIZ) of the Barents Sea, in May 1999, along two transects across the ice edge. On each station, physical background measurements and zooplankton samples were taken every 6 h over a 24 h period at five discrete depth intervals. Cluster analysis revealed separation of open water stations from all ice stations as well as high similarity level among replicates belonging to particular station. Based on five replicates per station, analysis of variance (ANOVA) confirmed significant differences (P < 0.05) in abundances of the main mesozooplankton taxa among stations. Relations between the zooplankton community and environmental parameters were established using redundancy analysis (CANOCO). In total, 55% of mesozooplankton variability within studied area was explained by eight variables with significant conditional effects: depth stratum, fluorescence, temperature, salinity, bottom depth, latitude, bloom situation, and ice concentration. GLM models supported supposition about clear and negative relationship between concentration of Oithona similis, and overall mesozooplankton diversity The analyses showed a dynamic relationship between mesozooplankton distribution and hydrological conditions on short-term scale. Furthermore, our study demonstrated that variability in the physical environment of dynamic MIZ of the Barents Sea has measurable effect on the Arctic pelagic ecosystem.