975 resultados para One-way water transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-time proxy signatures are one-time signatures for which a primary signer can delegate his or her signing capability to a proxy signer. In this work we propose two one-time proxy signature schemes with different security properties. Unlike other existing one-time proxy signatures that are constructed from public key cryptography, our proposed schemes are based one-way functions without trapdoors and so they inherit the communication and computation efficiency from the traditional one-time signatures. Although from a verifier point of view, signatures generated by the proxy are indistinguishable from those created by the primary signer, a trusted authority can be equipped with an algorithm that allows the authority to settle disputes between the signers. In our constructions, we use a combination of one-time signatures, oblivious transfer protocols and certain combinatorial objects. We characterise these new combinatorial objects and present constructions for them.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anisotropy of transverse proton spin relaxation in collagen-rich tissues like cartilage and tendon is a well-known phenomenon that manifests itself as the "magic-angle" effect in magnetic resonance images of these tissues. It is usually attributed to the non-zero averaging of intra-molecular dipolar interactions in water molecules bound to oriented collagen fibers. One way to manipulate the contributions of these interactions to spin relaxation is by partially replacing the water in the cartilage sample with deuterium oxide. It is known that dipolar interactions in deuterated solutions are weaker, resulting in a decrease in proton relaxation rates. In this work, we investigate the effects of deuteration on the longitudinal and the isotropic and anisotropic contributions to transverse relaxation of water protons in bovine articular cartilage. We demonstrate that the anisotropy of transverse proton spin relaxation in articular cartilage is independent of the degree of deuteration, bringing into question some of the assumptions currently held over the origins of relaxation anisotropy in oriented tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to ever increasing climate instability, the number of natural disasters affecting society and communities is expected to increase globally in the future, which will result in a growing number of casualties and damage to property and infrastructure. Such damage poses crucial challenges for recovery of interdependent critical infrastructures. Post-disaster reconstruction is a complex undertaking as it is not only closely linked to the well-being and essential functioning of society, but also requires a large financial commitment. Management of critical infrastructure during post-disaster recovery needs to be underpinned by a holistic recognition that the recovery of each individual infrastructure system (e.g. energy, water, transport and information and communication technology) can be affected by the interdependencies that exist between these different systems. A fundamental characteristic of these interdependencies is that failure of one critical infrastructure system can result in the failure of other interdependent infrastructures, leading to a cascade of failures, which can impede post-disaster recovery and delay the subsequent reconstruction process. Consequently, there is a critical need for developing a holistic strategy to assess the influence of infrastructure interdependencies, and for incorporating these interdependencies into a post-disaster recovery strategy. This paper discusses four key dimensions of interdependencies that need to be considered in a post-disaster reconstruction planning. Using key concepts and sub-concepts derived from the notion of interdependency, the paper examines how critical infrastructure interdependencies affect the recovery processes of damaged infrastructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Earlier studies have shown that the speed of information transmission developed radically during the 19th century. The fast development was mainly due to the change from sailing ships and horse-driven coaches to steamers and railways, as well as the telegraph. Speed of information transmission has normally been measured by calculating the duration between writing and receiving a letter, or between an important event and the time when the news was published elsewhere. As overseas mail was generally carried by ships, the history of communications and maritime history are closely related. This study also brings a postal historical aspect to the academic discussion. Additionally, there is another new aspect included. In business enterprises, information flows generally consisted of multiple transactions. Although fast one-way information was often crucial, e.g. news of a changing market situation, at least equally important was that there was a possibility to react rapidly. To examine the development of business information transmission, the duration of mail transport has been measured by a systematic and commensurable method, using consecutive information circles per year as the principal tool for measurement. The study covers a period of six decades, several of the world's most important trade routes and different mail-carrying systems operated by merchant ships, sailing packets and several nations' steamship services. The main sources have been the sailing data of mail-carrying ships and correspondence of several merchant houses in England. As the world's main trade routes had their specific historical backgrounds with different businesses, interests and needs, the systems for information transmission did not develop similarly or simultaneously. It was a process lasting several decades, initiated by the idea of organizing sailings in a regular line system. The evolution proceeded generally as follows: originally there was a more or less irregular system, then a regular system and finally a more frequent regular system of mail services. The trend was from sail to steam, but both these means of communication improved following the same scheme. Faster sailings alone did not radically improve the number of consecutive information circles per year, if the communication was not frequent enough. Neither did improved frequency advance the information circulation if the trip was very long or if the sailings were overlapping instead of complementing each other. The speed of information transmission could be improved by speeding up the voyage itself (technological improvements, minimizing the waiting time at ports of call, etc.) but especially by organizing sailings so that the recipients had the possibility to reply to arriving mails without unnecessary delay. It took two to three decades before the mail-carrying shipping companies were able to organize their sailings in an optimal way. Strategic shortcuts over isthmuses (e.g. Panama, Suez) together with the cooperation between steamships and railways enabled the most effective improvements in global communications before the introduction of the telegraph.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Targeting between-species effects for improvement in synthetic hybrid populations derived from outcrossing parental tree species may be one way to increase the efficacy and predictability of hybrid breeding. We present a comparative analysis of the quantitative trait loci (QTL) which resolved between from within-species effects for adventitious rooting in two populations of hybrids between Pinus elliottii and P. caribaea, an outbred F1 (n=287) and an inbred-like F2 family (n=357). Most small to moderate effect QTL (each explaining 2-5% of phenotypic variation, PV) were congruent (3 out of 4 QTL in each family) and therefore considered within-species effects as they segregated in both families. A single large effect QTL (40% PV) was detected uniquely in the F2 family and assumed to be due to a between-species effect, resulting from a genetic locus with contrasting alleles in each parental species. Oligogenic as opposed to polygenic architecture was supported in both families (60% and 20% PV explained by 4 QTL in the F 2 and F1 respectively). The importance of adventitious rooting for adaptation to survive water-logged environments was thought in part to explain oligogenic architecture of what is believed to be a complex trait controlled by many hundreds of genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new two-dimensional 3d-4f mixed-metal mixed dicarboxylate (homocyclic and heterocyclic) of the formula [Gd2(H2O)2Ni(H2O)2(1,2-bdc)2(2,5-pydc)2] 3 8H2O (1; 1,2-H2bdc = 1,2-benzenedicarboxylic acid and 2,5-H2pydc = 2,5- pyridinedicarboxylic acid) has been prepared by employing the hydrothermal method. The structure has infinite onedimensional-Gd-O-Gd- chains formed by the edge-shared GdO9 polyhedral units, resulting exclusively from the connectivity between the Gd3+ ions and the 1,2-bdc units. The chains are connected by the [Ni(H2O)2(2,5-pydc)2]2- metalloligand, forming the two-dimensional layer arrangements. The stacking of the layers creates hydrophilic and hydrophobic spaces in the interlamellar region. A one-dimensional water ladder structure, formed by the extraframework water molecules, occupies the hydrophilic region while the benzene ring of 1,2-bdc occupies the hydrophobic region. To the best of our knowledge, the present compound represents the first example of a 3d-4f mixed-metal carboxylate in which two different aromatic dicarboxylate anions act as the linkers. The stabilization energies of the water clusters have been evaluated using density functional theory calculations. The water molecules in 1 are fully reversible accompanied by a change in color (greenish blue to brown) and coordination around Ni2+ ions (octahedral to distorted tetrahedral).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote drafting technology now available for sheep allows targeted supplementation of individuals within a grazing flock. This paper reports results of three experiments. Experiment 1 examined the weight change of Merino wethers allowed access to either lupin grain or whole cottonseed 0, 1, 2 or 7 days/week for 6 weeks. Experiment 2 examined the weight change of Merino wethers allowed access to either lupins or a sorghum + cottonseed meal (CSM) supplement 0, 2, 4 or 7 days/week for 8 weeks. Experiment 3 investigated the relationship between five allocations of trough space at the supplement self-feeders (5–50 cm/sheep) and the weight change of Merino wethers allowed access to lupins 1 day/week for 8 weeks. In all experiments, the Merino wethers had free access as a single group to drinking water and low quality hay in a large group pen and were allowed access to supplement once per day on their scheduled days of access. No water was available in the areas containing supplement, but one-way flow gates allowed animals to return to the group pen in their own time. There was a linear response in growth rate to increased frequency of access to lupins in Experiments 1 and 2, with each additional day of access increasing liveweight gain by 26 and 21 g/day, respectively. Similarly, the response to the sorghum + CSM supplement was linear, although significantly lower (P < 0.05), at 12 g/day. Providing access to whole cottonseed resulted in no significant change in growth rate compared with the control animals. In Experiment 3, decreasing trough space from 50 to 5 cm/sheep had no effect on sheep liveweight change. It was concluded that the relationships developed here, for growth response to increased frequency of access to lupins or a sorghum + CSM supplement, could be used to indicate the most appropriate frequency of access to supplement, through a remote drafting unit, to achieve sheep weight change targets. Also, that a trough space of 5 cm/sheep appears adequate in this supplementation system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Remote drafting technology now available for sheep makes possible targeted supplementation of individuals within a grazing flock. This system was evaluated by using 68 Merino wethers grazing dry-season, native Mitchell grass pasture (predominantly Astrebla spp.) as a group and receiving access to lupin grain through a remote drafter 0, 1, 2, 4 or 7 days/week for 8 weeks. The sole paddock watering point was separately fenced and access was via a one-way flow gate. Sheep exited the watering point through a remote drafter operated by solar power and were drafted by radio frequency identification (RFID) tag, according to treatment, either back into the paddock or into a common supplement yard where lupins were provided ad libitum in a self-feeder. Sheep were drafted into the supplement yard on only their first time through the drafter during the prescribed 24-h period and exited the supplement yard via one-way flow gates in their own time. The remote drafter operated with a high accuracy, with only 2.1% incorrect drafts recorded during the experimental period out of a total of 7027 sheep passes through the remote drafter. The actual number of accesses to supplement for each treatment group, in order, were generally less than that intended, i.e. 0.02, 0.69, 1.98, 3.35 and 6.04 days/week. Deviations from the intended number of accesses to supplement were mainly due to sheep not coming through to water on their allocated day of treatment access, although some instances were due to incorrect drafts. There was a non-linear response in growth rate to increased frequency of access to lupins with the growth rate response plateauing at similar to 3 actual accesses per week, corresponding to a growth rate of 72.5 g/head. day. This experiment has demonstrated the application of the remote drafting supplementation system for the first time under grazing conditions and with the drafter operated completely from solar power. The experiment demonstrates a growth response to increasing frequency of access to supplement and provides a starting point with which to begin to develop feeding strategies to achieve sheep weight-change targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintaining a high rate of water uptake is crucial for maximum longevity of cut stems. Physiological gel/tylosis formation decreases water transport efficiency in the xylem. The primary mechanism of action for post-harvest Cu2+ treatments in improving cut flower and foliage longevity has been elusive. The effect of Cu2+ on wound-induced xylem vessel occlusion was investigated for Acacia holosericea A. Cunn. ex G. Don. Experiments were conducted using a Cu2+ pulse (5 h, 2.2 mM) and a Cu2+ vase solution (0.5 mM) vs a deionized water (DIW) control. Development of xylem blockage in the stem-end region 10 mm proximal to the wounded stem surface was examined over 21 days by light and transmission electron microscopy. Xylem vessels of stems stood into DIW were occluded with gels secreted into vessel lumens via pits from surrounding axial parenchyma cells. Gel secretion was initiated within 1-2 days post-wounding and gels were detected in the xylem from day 3. In contrast, Cu2+ treatments disrupted the surrounding parenchyma cells, thereby inhibiting gel secretion and maintaining the vessel lumens devoid of occlusions. The Cu2+ treatments significantly improved water uptake by the cut stems as compared to the control. © 2013 Scandinavian Plant Physiology Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Peptide nanotubes with filled and empty pores and close-packed structures are formed in closely related pentapeptides. Enantiomorphic sequences, Boc-(D)Pro-Aib-Xxx-Aib-Val-OMe (Xxx = Leu, 1; Val, 2; Ala, 3; Phe, 4) and Boc-Pro-Aib-(D)Xxx-Aib-(D)Val-OMe ((XXX)-X-D = (D)Leu, 5; (D)Val, 6; (D)Ala, 7; (D)Phe, 8), yield molecular structures with a very similar backbone conformation but varied packing patterns in crystals. Peptides 1, 2, 5, and 6 show tubular structures with the molecules self-assembling along the crystallographic six-fold axis (c-axis) and revealing a honeycomb arrangement laterally (ab plane). Two forms of entrapped water wires have been characterized in 2: 2a with d(O center dot center dot center dot O) = 2.6 angstrom and 2b with d(O center dot center dot center dot O) = 3.5 angstrom. The latter is observed in 6 (6a) also. A polymorphic form of 6 (6b), grown from a solution of methanol-water, was observed to crystallize in a monoclinic system as a close-packed structure. Single-file water wire arrangements encapsulated inside hydrophobic channels formed by peptide nanotubes could be established by modeling the published structures in the cases of a cyclic peptide and a dipeptide. In all the entrapped water wires, each water molecule is involved in a hydrogen bond with a previous and succeeding water molecule. The O-H group of the water not involved in any hydrogen bond does not seem to be involved in an energetically significant interaction with the nanotube interior, a general feature of the one-dimensional water wires encapsulated in hydrophobic environements. Water wires in hydrophobic channels are contrasted with the single-file arrangements in amphipathic channels formed by aquaporins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since a majority of residential and industrial building hot water needs are around 50 degrees C, an integrated solar water heater could provide a bulk source that blends collection and storage into one unit. This paper describes the design, construction and performance test results of one such water-heating device. The test unit has an absorber area of 1.3 m(2) and can hold 1701 of water, of which extractable volume per day is 1001. Its performance was evaluated under various typical operating conditions. Every morning at about 7:00 a.m., 1001 of hot water were drawn from the sump and replaced with cold water from the mains. Although, during most of the days, the peak temperatures of water obtained are between 50 and 60 degrees C, the next morning temperatures were lower at 45-50 degrees C. Daytime collection efficiencies of about 60% and overall efficiencies of about 40% were obtained. Tests were conducted with and without stratification. Night radiation losses were reduced by use of a screen insulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accompanying collective research report is the result of the research project in 1986­90 between The Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results. Annual cycle affects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. Linking the theoretical model with long term temperature data allowed us to analyze what type of temperature response produced favorable outcome in different climates. Initiation of growth consumes the carbohydrate reserves in plants. We measured the dynamics of insoluble and soluble sugars in the very northern and Karelian conditions. Clear cyclical pattern was observed but the differences between locations were surprisingly small. Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The effect of other factors is so small that they can be omitted without any considerable loss of accuracy. A special experiment carried out in Hyytiälä showed that the needle living space, defined as the ratio between the shoot cylindric volume and needle surface area, correlates with the shoot photosynthesis. The penetration of irradiance into Scots pine canopy is a complicated phenomenon because of the movement of the sun on the sky and the complicated structure of branches and needles. A moderately simple but balanced forest radiation regime submodel was constructed. It consists of the tree crown and forest structure, the gap probability calculation and the consideration of spatial and temporal variation of radiation inside the forest. The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structures. The water transport seems to be a good common factor to analyse these properties of tree structure. There are evident regressions between cross-sectional areas measured at different locations along the water pathway from fine roots to needles. The observed regressions have clear geographical trends. For example, the same cross-sectional area can support three times higher needle mass in South Russia than in Lapland. Geographical trends can also be seen in shoot and needle structure. Analysis of data published by several Russian authors show, that one ton of needles transpire 42 ton of water a year. This annual amount of transpiration seems to be independent of geographical location, year and site conditions. The produced theoretical and experimental material is utilised in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed for growth and maintenance and nutrients are taken according to the metabolic needs. The annual photosynthetic production by trees in the stand is determined as a function of irradiance and shading during the active period. The utilisation of the annual photosynthetic production to the growth of different components of trees is based on structural regularities. Since the fundamental metabolic processes are the same in all locations the same growth model structure can be applied in the large range of Scots pine. The annual photosynthetic production and structural regularities determining the allocation of resources have geographical features. The common field measurements enable the application of the model to the analysis of growth and development of stands growing on the five locations of experiments. The model enables the analysis of geographical differences in the growth of Scots pine. For example, the annual photosynthetic production of a 100-year-old stand at Voronez is 3.5 times higher than in Lapland. The share consumed to needle growth (30 %) and to growth of branches (5 %) seems to be the same in all locations. In contrast, the share of fine roots is decreasing when moving from north to south. It is 20 % in Lapland, 15 % in Hyytiälä Central Finland and Kentjärvi Karelia and 15 % in Voronez South Russia. The stem masses (115­113 ton/ha) are rather similar in Hyytiälä, Kentjärvi and Voronez, but rather low (50 ton/ha) in Lapland. In Voronez the height of the trees reach 29 m being in Hyytiälä and Kentjärvi 22 m and in Lapland only 14 m. The present approach enables utilization of structural and functional knowledge, gained in places of intensive research, in the analysis of growth and development of any stand. This opens new possibilities for growth research and also for applications in forestry practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a one-way nested Indian Ocean regional model. The model combines the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory's (GFDL) Modular Ocean Model (MOM4p1) at global climate model resolution (nominally one degree), and a regional Indian Ocean MOM4p1 configuration with 25 km horizontal resolution and 1 m vertical resolution near the surface. Inter-annual global simulations with Coordinated Ocean-Ice Reference Experiments (CORE-II) surface forcing over years 1992-2005 provide surface boundary conditions. We show that relative to the global simulation, (i) biases in upper ocean temperature, salinity and mixed layer depth are reduced, (ii) sea surface height and upper ocean circulation are closer to observations, and (iii) improvements in model simulation can be attributed to refined resolution, more realistic topography and inclusion of seasonal river runoff. Notably, the surface salinity bias is reduced to less than 0.1 psu over the Bay of Bengal using relatively weak restoring to observations, and the model simulates the strong, shallow halocline often observed in the North Bay of Bengal. There is marked improvement in subsurface salinity and temperature, as well as mixed layer depth in the Bay of Bengal. Major seasonal signatures in observed sea surface height anomaly in the tropical Indian Ocean, including the coastal waveguide around the Indian peninsula, are simulated with great fidelity. The use of realistic topography and seasonal river runoff brings the three dimensional structure of the East India Coastal Current and West India Coastal Current much closer to observations. As a result, the incursion of low salinity Bay of Bengal water into the southeastern Arabian Sea is more realistic. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phonon interaction with electrons or phonons or with structural defects result in a phonon mode conversion. The mode conversion is governed by the frequency wave-vector dispersion relation. The control over phonon mode or the screening of phonon in graphene is studied using the propagation of amplitude modulated phonon wave-packet. Control over phonon properties like frequency and velocity opens up several wave guiding, energy transport and thermo-electric applications of graphene. One way to achieve this control is with the introduction of nano-structured scattering in the phonon path. Atomistic model of thermal energy transport is developed which is applicable to devices consisting of source, channel and drain parts. Longitudinal acoustic phonon mode is excited from one end of the device. Molecular dynamics based time integration is adopted for the propagation of excited phonon to the other end of the device. The amount of energy transfer is estimated from the relative change of kinetic energy. Increase in the phonon frequency decreases the kinetic energy transmission linearly in the frequency band of interest. Further reduction in transmission is observed with the tuning of channel height of the device by increasing the boundary scattering. Phonon mode selective transmission control have potential application in thermal insulation or thermo-electric application or photo-thermal amplification.