109 resultados para Odontoblast


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Osteogenesis imperffecta (OI) is a heterogeneous group of heritable connetive tissue diseases, quantity and/or qualitative defect in type 1 collagen syntesis; sometimes and in some types it can be associated to dentinogenesis imperfecta (DI), a hereditary disorder in dentin formation that comprises a group of autosomal dominant genetic conditions characterized by abnormal dentine structure affecting either the primary or both the primary and secondary dentitions. Aim: the aim of this study was to assess the correlation between OI and DI from both a clinical and histological point of view, clarifying the structural and ultrastructural changes. Eighteen children (&-15 years aged) with diagnosis of OI were examined for dental alterations referable to DI; for each patient, the OI type (I, III, IV) was recorded. Extracted or normally exfolied teeth were subjected to a histological examination.Results: a total of eleven patients had abnormal discolourations referable to DI: five patients were affected by OI type I, three by OI III, and three patients by OI type IV. The discolourations, yellow/brown or oplaescent grey, could not be related to the different types of OI. Histological exam of primary teeth showed severe pathological change in dentin, structured into four diffeent layers. A collagen defect due to odontoblast dysfunction was theorized to be on the base of the histological changes. Conclusions: there is no correlation between the type of OI and the type of discolouration. The underlying dentinal defect seems to be related to an odontoblast dysfunction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION Proangiogenic prolyl hydroxylase (PHD) inhibitors represent a novel approach to stimulate tissue regeneration. Diabetes mellitus involves the accumulation of advanced glycation end products (AGEs). Here we evaluated the impact of AGEs on the response of human pulp tissue to the PHD inhibitor L-mimosine (L-MIM) in monolayer cultures of dental pulp-derived cells (DPCs) and tooth slice organ cultures. METHODS In monolayer cultures, DPCs were incubated with L-MIM and AGEs. Viability was assessed based on formazan formation, live-dead staining, annexin V/propidium iodide, and trypan blue exclusion assay. Vascular endothelial growth factor (VEGF), interleukin (IL)-6, and IL-8 production was evaluated by quantitative polymerase chain reaction and immunoassays. Furthermore, expression levels of odontoblast markers were assessed, and alizarin red staining was performed. Tooth slice organ cultures were performed, and VEGF, IL-6, and IL8 levels in their supernatants were measured by immunoassays. Pulp tissue vitality and morphology were assessed by MTT assay and histology. RESULTS In monolayer cultures of DPCs, L-MIM at nontoxic concentrations increased the production of VEGF and IL-8 in the presence of AGEs. Stimulation with L-MIM decreased alkaline phosphatase levels and matrix mineralization also in the presence of AGEs, whereas no significant changes in dentin matrix protein 1 and dentin sialophosphoprotein expression were observed. In tooth slice organ cultures, L-MIM increased VEGF but not IL-6 and IL-8 production in the presence of AGEs. The pulp tissue was vital, and no signs of apoptosis or necrosis were observed. CONCLUSIONS Overall, in the presence of AGEs, L-MIM increases the proangiogenic capacity, but decreases alkaline phosphatase expression and matrix mineralization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression.

METHODS: Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies.

RESULTS: Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment.

CONCLUSIONS: In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las resinas compuestas y adhesivos dentales se utilizan ampliamente para la restauración de dientes con pulpas vitales. La preferencia en el uso de estas resinas compuestas podría estar atribuida a que son materiales con buenos resultados estéticos y se consideran materiales de restauración estables. Sin embargo se ha demostrado que son susceptibles a la degradación y liberación de la fracción de sus componentes y que cierta cantidad de los monómeros de su composición permanecen sin polimerizar por un largo periodo de tiempo, pudiendo estos filtrarse hacia el tejido pulpar y causar alteraciones de la actividad fisiológica de las células de la pulpa (DPCs) (1). Además, estudios in vitro han demostrado que los componentes de las resinas compuestas tienen potenciales tóxicos, generando respuestas inmediatas y a largo plazo luego de su aplicación. Identificar el potencial tóxico y deletéreo de los materiales de restauración sobre el tejido pulpar es de gran interés y relevancia clínica, por ello este estudio comprende en una revisión de la literatura acerca de la respuesta pulpar a los materiales de restauración tipo resina.