986 resultados para Ocean Island basalts
Resumo:
The Early Cretaceous basaltic rocks obtained from Sites 765 and 766 in the eastern Indian Ocean floor were mostly iron-rich normal mid-ocean ridge basalts (N-MORB), which were derived from a depleted mantle source having strongly light rare earth element (LREE)-depleted rare-earth patterns and a high titanium/zirconium (Ti/Zr) ratio. Basaltic rocks in the upper part of the Site 765 basement section include megacrysts and gabbroic fragments of widely varying mineral chemistry. These megacrysts range from An90 plagioclase, including highly magnesian basaltic glass coexisting with augite of Mg# (= 100 Mg/[Fe+Mg]) at 85, to An50 plagioclase coexisting with hypersthene. This varying mineralogy of megacrysts and gabbroic fragments indicates that a considerable degree of fractional crystallization took place in the magma chamber. The unusual negative correlation between incompatible elements (e.g., TiO2) and FeO*/MgO observed among Site 765 basement basalts and fresh volcanic glasses suggest source-mantle heterogeneity in terms of FeO*/MgO. Strontium isotope ratios (87Sr/86Sr) of the basaltic rocks from both sites are between 0.7027 and 0.7033 and are comparable to those of mid-Indian Ocean ridge basalts (MIORB). The basalt pebbles encountered in the sedimentary section may have been transported from the basement highs nearer the Australian continent and include basaltic compositions ranging from primitive N-MORBs to evolved enriched (E)-MORBs. Their mantle source was not as depleted as that of the basement basalts. These rocks may be the products of earlier volcanism that took place during the rifting of the Australian continent.
Resumo:
Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.
Resumo:
The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2's, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ~2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ - 3 and FMQ - 1. This is consistent with fO2's of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2's as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2's in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively. Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ~FMQ - 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2's. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2's significantly greater than that of modern oceanic mantle. Instead, the fO2's inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.
Resumo:
Basalts from Hole 516F, DSDP Leg 72 on the Rio Grande Rise are tholeiitic in character but differ from normal mid-ocean ridge basalts in the South Atlantic in higher concentrations of incompatible elements such as Ti, K, V, Sr, Ba, Zr, Nb, and light rare-earth elements and in lower concentrations of Mg, Cr, and Ni. They contrast with previously reported basalts from the Rio Grande Rise, which were highly alkalic in character. The Rio Grande Rise basalts from Hole 516F (age 84.5 Ma) are generally similar to basalts from the eastern end of the Walvis Ridge (80-100 Ma). It is suggested that they either originated, like the Walvis Ridge, from a mantle hot spot that is different from the present-day hot spot (Tristan da Cunha) and that has changed composition with time, or from a spreading center that was shallow and chemically influenced by the adjacent hot spot, similar to the present-day Mid-Atlantic Ridge near the Azores and Tristan da Cunha.
Resumo:
Forty sediment and four basement basalt samples from DSDP Hole 525A, Leg 74, as well as nine basalt samples from southern and offshore Brazil, were subjected to instrumental neutron activation analysis. Thirty-two major, minor, and trace elements were determined. The downcore element concentration profiles and regression analyses show that the rare earth elements (REE) are present in significant amounts in both the carbonate and noncarbonate phases in sediments; Sr is concentrated in the carbonate phase, and most of the other elements determined exist mainly in the noncarbonate phase. The calculated partition coefficients of the REE between the carbonate phase and the free ion concentrations in seawater are high and increase with decreasing REE ionic radii from 3.9 x 10**6 for La to 15 x 10**6 for Lu. Calculations show that the lanthanide concentrations in South Atlantic seawater have not been changed significantly over the past 70 Ma. The Ce anomaly observed in the carbonate phase is a redox indicator of ancient seawater. Study of the Ce anomaly reveals that seawater was anoxic over the Walvis Ridge during the late Campanian. As the gap between South America and West Africa widened and the Walvis Ridge subsided from late Campanian to late Paleocene times, the water circulation of the South Atlantic improved and achieved oxidation conditions about 54 Ma that are similar to present seawater redox conditions in the world oceans. The chemical compositions of the basement rocks correspond to alkalic basalts, not mid-ocean ridge basalts (MORBs). The results add more evidence to support the hypothesis that the Walvis Ridge was formed by a series of volcanos moving over a "hot spot" near the Mid-Atlantic Ridge. From the chemical composition and REE pattern, one 112 Ma old basalt on the Brazilian continental shelf has been identified as an early stage MORB. To date, this is the oldest oceanic tholeiite recovered from the South Atlantic. This direct evidence indicates that the continental split between South America and Africa commenced > 112 Ma.
Resumo:
Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.
Resumo:
The carbonate-free metalliferous fraction of thirty-nine sediment samples from four DSDP Leg 92 sites has been analyzed for 12 elements, and a subset of 16 samples analyzed for Pb isotopic composition. The main geochemical features of this component are as follows: i) very high concentrations of Fe and Mn, typically 25-39% and 5-14%, respectively; ii) Al and Ca contents generally less than 2% and 5%, respectively; iii) high Cu (1000-2000 ppm), and Zn and Ni (500-1000 ppm) values; and iv) Co and Pb concentrations of 100-250 ppm. In terms of element partitioning within the metalliferous fraction, amorphous to poorly crystallized oxide-oxyhydroxides removed by the second leach carry virtually all of the Mn, and about 90% of the Ca, Sr and Ni. The well-crystallized goethite-rich material removed by the third leach carries the majority of Fe, Cu, and Pb. These relations hold for sediments as young as ~1-2 Ma, indicating early partitioning of hydrothermal Fe and Mn into separate phases. Calculated mass accumulation rates (MAR) for Fe, Mn, Cu, Pb, Zn and Ni in the bulk sediment show the same overall trends at three of the sites, with greatest MAR values near the basement, and a general decrease in MAR values towards the tops of the holes (for sediments deposited above the lysocline). These relations strongly support the concept of a declining hydrothermal contribution of these elements away from a ridge axis. Nevertheless, MAR values for these metals up to ~200 km from the ridge axis are orders of magnitude higher than on abyssal seafloor plains where there is no hydrothermal influence. Mn/Fe ratios throughout the sediment column at two sites indicate that the composition of the hydrothermal precipitates changed during transport through seawater, becoming significantly depleted in Mn beyond ~200-300 km from the axis, but maintaining roughly the same proportion of Fe. Most of the Pb isotope data for the Leg 92 metalliferous sediments form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts toward the field for Mn nodules. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb derived from basaltic and seawater end-member sources. The least radiogenic sediments reflect the average Pb isotope composition of discharging hydrothermal solutions and ocean-ridge basalt at the EPR over the ~4-8 Ma B.P. interval. Pb in sediments deposited up to 250 km from the axis can be almost entirely of basaltic-hydrothermal origin. Lateral transport of some basaltic Pb by ocean currents appears to extend to distances of at least 1000 km west of the East Pacific Rise.
Resumo:
Mid-ocean-ridge basalts recovered from Hole 1256D during Ocean Drilling Program Leg 206 exhibit the effects of various low-temperature (<100°C) alteration processes, including the formation of black or dark green alteration halos adjacent to celadonite-bearing veins. In several samples from the deepest basalts, a Ti-rich hydrogarnet occurs. To our knowledge, such a mineral has never been reported in the oceanic crust. This report presents a brief description and microprobe analyses of this hydrogarnet and associated celadonite. More detailed characterizations of this mineral and a description of its relationship to other secondary minerals will be undertaken in a future study, in an attempt to determine the mineral's formation conditions and its place in the general alteration history of the Hole 1256D basalts.
Resumo:
Whole-rock basalt samples from the upper half of Deep Sea Drilling Project Hole 504B have oxygen-isotope compositions typical of mid-ocean-ridge basalts which have experienced a moderate degree of low-temperature alteration by sea water. By contrast, d18O values in the lower half of the hole correspond to basalts which have experienced almost no detectable oxygen-isotope alteration. These observations suggest that the overall water/rock ratio was lower in the lower half of the drilled crust. A correlation between d18O values and 87Sr/86Sr ratios suggests that the water/rock ratio, rather than temperature variation, was the main factor determining basalt d18O values. Hydrogen-isotope data appear to be consistent with a low water/rock ratio in the lower part of the crust.
Resumo:
Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.
Resumo:
Several thin (1-10 cm) megascopic vitric tephras occur in the late Cenozoic calcareous oozes on Lord Howe Rise in the Tasman Sea and off eastern South Island, New Zealand. Of the 18 tephras analyzed 15 are silicic (75-78% SiO2) with abundant clear glass shards and a biotite ± hypersthene ± green hornblende ferromagnesian mineralogy. The Neogene silicic tephras were derived from the now-extinct Coromandel volcanic area in New Zealand, and the Quaternary ones from the presently active Central Volcanic Region of New Zealand. On the basis of glass chemistry and age, several of the Quaternary tephras are probably correlatives, and at least two can be matched to the major on-land Mt. Curl tephra (-0.25 m.y.). The occurrence of correlative silicic tephras both northwest and southeast of New Zealand may result from particularly violent eruptions, the ash below and above an altitude of -20 km being dispersed in opposite directions toward the Pacific Ocean and Tasman Sea, respectively. Ash drifting eastward into the southeasterly trade wind belt off northeastern New Zealand could also be carried into the central and northern Tasman Sea. Three megascopic tephras consist of altered basic shards and common labradorite crystals. They record Neogene explosive basaltic to andesitic activity from nearby ocean island or ridge sources in the Ontong-Java Plateau and Vanuatu regions. The megascopic tephras are a very incomplete and biased record of late Cenozoic explosive volcanism in the southwest Pacific because the innumerable, thin, green argillaceous layers in the cores (Gardner et al., this volume) probably represent devitrified intermediate to basic tephras derived mainly from oceanic arc volcanism along the Pacific/Australia plate boundary. In contrast to the New Zealand-derived silicic glass shards, the preservation potential of these more basic shards in Leg 90 calcareous sediments was low.
Resumo:
The remote South Sandwich arc is an archipelago of small volcanic islands and seamounts entirely surrounded by deep water and about 600 km away from the closest island, South Georgia. As some of the youngest islands (< 5 m.y.) in the Southern Ocean they are ideal for studying colonization processes of the seabed by benthic fauna, but are rarely investigated because of remoteness and extreme weather. The current study attempted to quantify the richness and abundance of the epibenthic macrofauna around the Southern Thule group by taking five epibenthic sledge samples along a depth transect including three shelf (one at 300 m and two at 500 m) and two slope stations (1000 and 1500 m). Our aim was to investigate higher taxon richness and community composition in an isolated Antarctic locality, since recent volcanic eruptions between 1964 and 1997. We examined patterns across all epibenthic macrofauna at phylum and class levels, and investigated trends in some model groups of crustaceans to order and family level. We found that abundance was highest in the shallowest sample and decreased with depth. Shelf samples (300 and 500 m) were dominated by molluscs and malacostracans while at the deeper stations (1000 and 1500 m) nematodes were the most abundant taxon. Surprisingly, the shallow shelf was dominated by animals with restricted dispersal abilities, such as direct developing brooders (malacostracans) or those with lecithotrophic larvae (bivalves of the genus Yoldiella, most bryozoan species). Despite Southern Thule's geological youth, recent eruptions, and its remoteness the shallow shelf was rich in higher taxa (phyla/classes) as well as orders and families of our model groups. Future work at higher taxonomic resolution (species level) should greatly increase understanding of how life has reached and established on these young and highly disturbed seabeds.
Resumo:
Boron and Pb isotopic compositions together with B-U-Th-Pb concentrations were determined for Pacific and Indian mantle-type mid-ocean ridge basalts (MORB) obtained from shallow drill holes near the Australian Antarctic Discordance (AAD). Boron contents in the altered samples range from 29.7 to 69.6 ppm and are extremely enriched relative to fresh MORB glass with 0.4-0.6 ppm B. Similarly the d11B values range from 5.5? to 15.9? in the altered basalts and require interaction with a d11B enriched fluid similar to seawater ~39.5? and/or boron isotope fractionation during the formation of secondary clays. Positive correlations between B concentrations and other chemical indices of alteration such as H2O CO2, K2O, P2O5, U and 87Sr/86Sr indicate that B is progressively enriched in the basalts as they become more altered. Interestingly, d11B shows the largest isotopic shift to +16? in the least altered basalts, followed by a continual decrease to +5-6? in the most altered basalts. These observations may indicate a change from an early seawater dominated fluid towards a sediment-dominated fluid as a result of an increase in sediment cover with increasing age of the seafloor. The progression from heavy d11B towards lighter values with increasing degrees of alteration may also reflect increased formation of clay minerals (e.g., saponite). A comparison of 238U/204Pb and 206Pb/204Pb in fresh glass and variably altered basalt from Site 1160B shows extreme variations that are caused by secondary U enrichment during low temperature alteration. Modeling of the U-Pb isotope system confirms that some alteration events occurred early in the 21.5 Ma history of these rocks, even though a significant second pulse of alteration happened at ~12 Ma after formation of the crust. The U-Pb systematics of co-genetic basaltic glass and variably low temperature altered basaltic whole rocks are thus a potential tool to place age constraints on the timing of alteration and fluid flow in the ocean crust.