840 resultados para Object-oriented methods (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 7-9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliography: p. 141-143.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Originally presented as the author's thesis (M.A.), University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jackson System Development (JSD) is an operational software development method which addresses most of the software lifecycle either directly or by providing a framework into which more specialised techniques can fit. The method has two major phases: first an abstract specification is derived that is in principle executable; second the specification is implemented using a variety of transformations. The object oriented paradigm is based on data abstraction and encapsulation coupled to an inheritance architecture that is able to support software reuse. Its claims of improved programmer productivity and easier program maintenance make it an important technology to be considered for building complex software systems. The mapping of JSD specifications into procedural languages typified by Cobol, Ada, etc., involves techniques such as inversion and state vector separation to produce executable systems of acceptable performance. However, at present, no strategy exists to map JSD specifications into object oriented languages. The aim of this research is to investigate the relationship between JSD and the object oriented paradigm, and to identify and implement transformations capable of mapping JSD specifications into an object oriented language typified by Smalltalk-80. The direction which the transformational strategy follows is one whereby the concurrency of a specification is removed. Two approaches implementing inversion - an architectural transformation resulting in a simulated coroutine mechanism being generated - are described in detail. The first approach directly realises inversions by manipulating Smalltalk-80 system contexts. This is possible in Smalltalk-80 because contexts are first class objects and are accessible to the user like any other system object. However, problems associated with this approach are expounded. The second approach realises coroutine-like behaviour in a structure called a `followmap'. A followmap is the results of a transformation on a JSD process in which a collection of followsets is generated. Each followset represents all possible state transitions a process can undergo from the current state of the process. Followsets, together with exploitation of the class/instance mechanism for implementing state vector separation, form the basis for mapping JSD specifications into Smalltalk-80. A tool, which is also built in Smalltalk-80, supports these derived transformations and enables a user to generate Smalltalk-80 prototypes of JSD specifications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The traditional waterfall software life cycle model has several weaknesses. One problem is that a working version of a system is unavailable until a late stage in the development; any omissions and mistakes in the specification undetected until that stage can be costly to maintain. The operational approach which emphasises the construction of executable specifications can help to remedy this problem. An operational specification may be exercised to generate the behaviours of the specified system, thereby serving as a prototype to facilitate early validation of the system's functional requirements. Recent ideas have centred on using an existing operational method such as JSD in the specification phase of object-oriented development. An explicit transformation phase following specification is necessary in this approach because differences in abstractions between the two domains need to be bridged. This research explores an alternative approach of developing an operational specification method specifically for object-oriented development. By incorporating object-oriented concepts in operational specifications, the specifications have the advantage of directly facilitating implementation in an object-oriented language without requiring further significant transformations. In addition, object-oriented concepts can help the developer manage the complexity of the problem domain specification, whilst providing the user with a specification that closely reflects the real world and so the specification and its execution can be readily understood and validated. A graphical notation has been developed for the specification method which can capture the dynamic properties of an object-oriented system. A tool has also been implemented comprising an editor to facilitate the input of specifications, and an interpreter which can execute the specifications and graphically animate the behaviours of the specified systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.