951 resultados para Object detection
Resumo:
Noise is one of the main factors degrading the quality of original multichannel remote sensing data and its presence influences classification efficiency, object detection, etc. Thus, pre-filtering is often used to remove noise and improve the solving of final tasks of multichannel remote sensing. Recent studies indicate that a classical model of additive noise is not adequate enough for images formed by modern multichannel sensors operating in visible and infrared bands. However, this fact is often ignored by researchers designing noise removal methods and algorithms. Because of this, we focus on the classification of multichannel remote sensing images in the case of signal-dependent noise present in component images. Three approaches to filtering of multichannel images for the considered noise model are analysed, all based on discrete cosine transform in blocks. The study is carried out not only in terms of conventional efficiency metrics used in filtering (MSE) but also in terms of multichannel data classification accuracy (probability of correct classification, confusion matrix). The proposed classification system combines the pre-processing stage where a DCT-based filter processes the blocks of the multichannel remote sensing image and the classification stage. Two modern classifiers are employed, radial basis function neural network and support vector machines. Simulations are carried out for three-channel image of Landsat TM sensor. Different cases of learning are considered: using noise-free samples of the test multichannel image, the noisy multichannel image and the pre-filtered one. It is shown that the use of the pre-filtered image for training produces better classification in comparison to the case of learning for the noisy image. It is demonstrated that the best results for both groups of quantitative criteria are provided if a proposed 3D discrete cosine transform filter equipped by variance stabilizing transform is applied. The classification results obtained for data pre-filtered in different ways are in agreement for both considered classifiers. Comparison of classifier performance is carried out as well. The radial basis neural network classifier is less sensitive to noise in original images, but after pre-filtering the performance of both classifiers is approximately the same.
Resumo:
A new high performance, programmable image processing chip targeted at video and HDTV applications is described. This was initially developed for image small object recognition but has much broader functional application including 1D and 2D FIR filtering as well as neural network computation. The core of the circuit is made up of an array of twenty one multiplication-accumulation cells based on systolic architecture. Devices can be cascaded to increase the order of the filter both vertically and horizontally. The chip has been fabricated in a 0.6 µ, low power CMOS technology and operates on 10 bit input data at over 54 Megasamples per second. The introduction gives some background to the chip design and highlights that there are few other comparable devices. Section 2 gives a brief introduction to small object detection. The chip architecture and the chip design will be described in detail in the later sections.
Resumo:
The Field Programmable Gate Array (FPGA) implementation of the commonly used Histogram of Oriented Gradients (HOG) algorithm is explored. The HOG algorithm is employed to extract features for object detection. A key focus has been to explore the use of a new FPGA-based processor which has been targeted at image processing. The paper gives details of the mapping and scheduling factors that influence the performance and the stages that were undertaken to allow the algorithm to be deployed on FPGA hardware, whilst taking into account the specific IPPro architecture features. We show that multi-core IPPro performance can exceed that of against state-of-the-art FPGA designs by up to 3.2 times with reduced design and implementation effort and increased flexibility all on a low cost, Zynq programmable system.
Resumo:
Oceans - San Diego, 2013
Resumo:
Nos últimos anos, o fácil acesso em termos de custos, ferramentas de produção, edição e distribuição de conteúdos audiovisuais, contribuíram para o aumento exponencial da produção diária deste tipo de conteúdos. Neste paradigma de superabundância de conteúdos multimédia existe uma grande percentagem de sequências de vídeo que contém material explícito, sendo necessário existir um controlo mais rigoroso, de modo a não ser facilmente acessível a menores. O conceito de conteúdo explícito pode ser caraterizado de diferentes formas, tendo o trabalho descrito neste documento incidido sobre a deteção automática de nudez feminina presente em sequências de vídeo. Este processo de deteção e classificação automática de material para adultos pode constituir uma ferramenta importante na gestão de um canal de televisão. Diariamente podem ser recebidas centenas de horas de material sendo impraticável a implementação de um processo manual de controlo de qualidade. A solução criada no contexto desta dissertação foi estudada e desenvolvida em torno de um produto especifico ligado à área do broadcasting. Este produto é o mxfSPEEDRAIL F1000, sendo este uma solução da empresa MOG Technologies. O objetivo principal do projeto é o desenvolvimento de uma biblioteca em C++, acessível durante o processo de ingest, que permita, através de uma análise baseada em funcionalidades de visão computacional, detetar e sinalizar na metadata do sinal, quais as frames que potencialmente apresentam conteúdo explícito. A solução desenvolvida utiliza um conjunto de técnicas do estado da arte adaptadas ao problema a tratar. Nestas incluem-se algoritmos para realizar a segmentação de pele e deteção de objetos em imagens. Por fim é efetuada uma análise critica à solução desenvolvida no âmbito desta dissertação de modo a que em futuros desenvolvimentos esta seja melhorada a nível do consumo de recursos durante a análise e a nível da sua taxa de sucesso.
Resumo:
The thesis mainly focuses on material characterization in different environments: freely available samples taken in planar fonn, biological samples available in small quantities and buried objects.Free space method, finds many applications in the fields of industry, medicine and communication. As it is a non-contact method, it can be employed for monitoring the electrical properties of materials moving through a conveyor belt in real time. Also, measurement on such systems at high temperature is possible. NID theory can be applied to the characterization of thin films. Dielectric properties of thin films deposited on any dielectric substrate can be determined. ln chemical industry, the stages of a chemical reaction can be monitored online. Online monitoring will be more efficient as it saves time and avoids risk of sample collection.Dielectric contrast is one of the main factors, which decides the detectability of a system. lt could be noted that the two dielectric objects of same dielectric constant 3.2 (s, of plastic mine) placed in a medium of dielectric constant 2.56 (er of sand) could even be detected employing the time domain analysis of the reflected signal. This type of detection finds strategic importance as it provides solution to the problem of clearance of non-metallic mines. The demining of these mines using the conventional techniques had been proved futile. The studies on the detection of voids and leakage in pipes find many applications.The determined electrical properties of tissues can be used for numerical modeling of cells, microwave imaging, SAR test etc. All these techniques need the accurate determination of dielectric constant. ln the modem world, the use of cellular and other wireless communication systems is booming up. At the same time people are concemed about the hazardous effects of microwaves on living cells. The effect is usually studied on human phantom models. The construction of the models requires the knowledge of the dielectric parameters of the various body tissues. lt is in this context that the present study gains significance. The case study on biological samples shows that the properties of normal and infected body tissues are different. Even though the change in the dielectric properties of infected samples from that of normal one may not be a clear evidence of an ailment, it is an indication of some disorder.ln medical field, the free space method may be adapted for imaging the biological samples. This method can also be used in wireless technology. Evaluation of electrical properties and attenuation of obstacles in the path of RF waves can be done using free waves. An intelligent system for controlling the power output or frequency depending on the feed back values of the attenuation may be developed.The simulation employed in GPR can be extended for the exploration of the effects due to the factors such as the different proportion of water content in the soil, the level and roughness of the soil etc on the reflected signal. This may find applications in geological explorations. ln the detection of mines, a state-of-the art technique for scanning and imaging an active mine field can be developed using GPR. The probing antenna can be attached to a robotic arm capable of three degrees of rotation and the whole detecting system can be housed in a military vehicle. In industry, a system based on the GPR principle can be developed for monitoring liquid or gas through a pipe, as pipe with and without the sample gives different reflection responses. lt may also be implemented for the online monitoring of different stages of extraction and purification of crude petroleum in a plant.Since biological samples show fluctuation in the dielectric nature with time and other physiological conditions, more investigation in this direction should be done. The infected cells at various stages of advancement and the normal cells should be analysed. The results from these comparative studies can be utilized for the detection of the onset of such diseases. Studying the properties of infected tissues at different stages, the threshold of detectability of infected cells can be determined.
Resumo:
This paper presents methods for moving object detection in airborne video surveillance. The motion segmentation in the above scenario is usually difficult because of small size of the object, motion of camera, and inconsistency in detected object shape etc. Here we present a motion segmentation system for moving camera video, based on background subtraction. An adaptive background building is used to take advantage of creation of background based on most recent frame. Our proposed system suggests CPU efficient alternative for conventional batch processing based background subtraction systems. We further refine the segmented motion by meanshift based mode association.
Resumo:
Detection of Objects in Video is a highly demanding area of research. The Background Subtraction Algorithms can yield better results in Foreground Object Detection. This work presents a Hybrid CodeBook based Background Subtraction to extract the foreground ROI from the background. Codebooks are used to store compressed information by demanding lesser memory usage and high speedy processing. This Hybrid method which uses Block-Based and Pixel-Based Codebooks provide efficient detection results; the high speed processing capability of block based background subtraction as well as high Precision Rate of pixel based background subtraction are exploited to yield an efficient Background Subtraction System. The Block stage produces a coarse foreground area, which is then refined by the Pixel stage. The system’s performance is evaluated with different block sizes and with different block descriptors like 2D-DCT, FFT etc. The Experimental analysis based on statistical measurements yields precision, recall, similarity and F measure of the hybrid system as 88.74%, 91.09%, 81.66% and 89.90% respectively, and thus proves the efficiency of the novel system.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.
Resumo:
In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.
Resumo:
Garment information tracking is required for clean room garment management. In this paper, we present a camera-based robust system with implementation of Optical Character Reconition (OCR) techniques to fulfill garment label recognition. In the system, a camera is used for image capturing; an adaptive thresholding algorithm is employed to generate binary images; Connected Component Labelling (CCL) is then adopted for object detection in the binary image as a part of finding the ROI (Region of Interest); Artificial Neural Networks (ANNs) with the BP (Back Propagation) learning algorithm are used for digit recognition; and finally the system is verified by a system database. The system has been tested. The results show that it is capable of coping with variance of lighting, digit twisting, background complexity, and font orientations. The system performance with association to the digit recognition rate has met the design requirement. It has achieved real-time and error-free garment information tracking during the testing.
Resumo:
This paper presents the two datasets (ARENA and P5) and the challenge that form a part of the PETS 2015 workshop. The datasets consist of scenarios recorded by us- ing multiple visual and thermal sensors. The scenarios in ARENA dataset involve different staged activities around a parked vehicle in a parking lot in UK and those in P5 dataset involve different staged activities around the perimeter of a nuclear power plant in Sweden. The scenarios of each dataset are grouped into ‘Normal’, ‘Warning’ and ‘Alarm’ categories. The Challenge specifically includes tasks that account for different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘atomic’ event detection) and High-Level Video Analysis (‘complex’ event detection). The evaluation methodology used for the Challenge includes well-established measures.
Resumo:
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post- processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.
Resumo:
This paper describes the dataset and vision challenges that form part of the PETS 2014 workshop. The datasets are multisensor sequences containing different activities around a parked vehicle in a parking lot. The dataset scenarios were filmed from multiple cameras mounted on the vehicle itself and involve multiple actors. In PETS2014 workshop, 22 acted scenarios are provided of abnormal behaviour around the parked vehicle. The aim in PETS 2014 is to provide a standard benchmark that indicates how detection, tracking, abnormality and behaviour analysis systems perform against a common database. The dataset specifically addresses several vision challenges corresponding to different steps in a video understanding system: Low-Level Video Analysis (object detection and tracking), Mid-Level Video Analysis (‘simple’ event detection: the behaviour recognition of a single actor) and High-Level Video Analysis (‘complex’ event detection: the behaviour and interaction recognition of several actors).
Resumo:
This work uses computer vision algorithms related to features in the identification of medicine boxes for the visually impaired. The system is for people who have a disease that compromises his vision, hindering the identification of the correct medicine to be ingested. We use the camera, available in several popular devices such as computers, televisions and phones, to identify the box of the correct medicine and audio through the image, showing the poor information about the medication, such: as the dosage, indication and contraindications of the medication. We utilize a model of object detection using algorithms to identify the features in the boxes of drugs and playing the audio at the time of detection of feauteres in those boxes. Experiments carried out with 15 people show that where 93 % think that the system is useful and very helpful in identifying drugs for boxes. So, it is necessary to make use of this technology to help several people with visual impairments to take the right medicine, at the time indicated in advance by the physician