968 resultados para Object Detection
Resumo:
Transmission of Cherenkov light through the atmosphere is strongly influenced by the optical clarity of the atmosphere and the prevailing weather conditions. The performance of telescopes measuring this light is therefore dependent on atmospheric effects. This thesis presents software and hardware developed to implement a prototype sky monitoring system for use on the proposed next-generation gamma-ray telescope array, VERITAS. The system, consisting of a CCD camera and a far-infrared pyrometer, was successfully installed and tested on the ten metre atmospheric Cherenkov imaging telescope operated by the VERITAS Collaboration at the F.L. Whipple Observatory in Arizona. The thesis also presents the results of observations of the BL Lacertae object, 1ES1959+650, made with the Whipple ten metre telescope. The observations provide evidence for TeV gamma-ray emission from the BL Lacertae object, 1ES1959+650, at a level of more than 15 standard deviations above background. This represents the first unequivocal detection of this object at TeV energies, making it only the third extragalactic source seen at such levels of significance in this energy range. The flux variability of the source on a number of timescales is also investigated.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.
Resumo:
The present study investigated the development of sensitivity to temporal synchrony between sounds of impact and pauses in the movement of an object by infants of 2 1/2, 4 and 6 months of age. Ninety infants were tested across four experiments with side-by-side videos of a red and white square and a blue and yellow triangle along with a centralized soundtrack which was synchronized with only one of the films. This preference phase was then followed by a search phase, where the two films were accompanied by intermittent bursts of the soundtrack from each object. Twomonth- olds showed no evidence of matching films and soundtracks on the basis of synchrony, however 4-month-olds looked more on the second block of trials to the object which paused when the sound occurred and directed more first looks during the preference phase to the matching object. Six-month-olds demonstrated significantly more first looks to the mismatched object during the search phase only. These results suggest that infants relate impact sounds with synchronous pauses in continuous motion by the age of four months.
Resumo:
Context. To study the evolution of Li in the Galaxy it is necessary to observe dwarf or subgiant stars. These are the only long-lived stars whose present-day atmospheric chemical composition reflects their natal Li abundances according to standard models of stellar evolution. Although Li has been extensively studied in the Galactic disk and halo, to date there has only been one uncertain detection of Li in an unevolved bulge star. Aims. Our aim with this study is to provide the first clear detection of Li in the Galactic bulge, based on an analysis of a dwarf star that has largely retained its initial Li abundance. Methods. We performed a detailed elemental abundance analysis of the bulge dwarf star MOA-2010-BLG-285S using a high-resolution and high signal-to-noise spectrum obtained with the UVES spectrograph at the VLT when the object was optically magnified during a gravitational microlensing event (visual magnification A similar to 550 during observation). The Li abundance was determined through synthetic line profile fitting of the (7)Li resonance doublet line at 670.8 nm. The results have been corrected for departures from LTE. Results. MOA-2010-BLG-285S is, at [Fe/H] = -1.23, the most metal-poor dwarf star detected so far in the Galactic bulge. Its old age (12.5 Gyr) and enhanced [alpha/Fe] ratios agree well with stars in the thick disk at similar metallicities. This star represents the first unambiguous detection of Li in a metal-poor dwarf star in the Galactic bulge. We find an NLTE corrected Li abundance of log epsilon(Li) = 2.16, which is consistent with values derived for Galactic disk and halo dwarf stars at similar metallicities and temperatures. Conclusions. Our results show that there are no signs of Li enrichment or production in the Galactic bulge during its earliest phases. Observations of Li in other galaxies (omega Cen) and other components of the Galaxy suggest further that the Spite plateau is universal.
Resumo:
In this paper we present a method for real-time detection and tracking of people in video captured by a depth camera. For each object to be assessed, an ordered sequence of values that represents the distances between its center of mass to the boundary points is calculated. The recognition is based on the analysis of the total distance value between the above sequence and some pre-defined human poses, after apply the Dynamic Time Warping. This similarity approach showed robust results in people detection.
Resumo:
Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.
Resumo:
Using head-mounted eye tracker material, we assessed spatial recognition abilities (e.g., reaction to object permutation, removal or replacement with a new object) in participants with intellectual disabilities. The "Intellectual Disabilities (ID)" group (n=40) obtained a score totalling a 93.7% success rate, whereas the "Normal Control" group (n=40) scored 55.6% and took longer to fix their attention on the displaced object. The participants with an intellectual disability thus had a more accurate perception of spatial changes than controls. Interestingly, the ID participants were more reactive to object displacement than to removal of the object. In the specific test of novelty detection, however, the scores were similar, the two groups approaching 100% detection. Analysis of the strategies expressed by the ID group revealed that they engaged in more systematic object checking and were more sensitive than the control group to changes in the structure of the environment. Indeed, during the familiarisation phase, the "ID" group explored the collection of objects more slowly, and fixed their gaze for a longer time upon a significantly lower number of fixation points during visual sweeping.
Resumo:
Iowa has approximately 1000 bridges that have been overlaid with a nominal 2" of portland cement concrete. A Delamtect survey of a sampling of the older overlaid bridges indicated delaminations in several of them. Eventually these bridges as well as those that have not received an overlay must be programmed for rehabilitation. Prior to rehabilitation the areas which are delaminated must be identified. There are currently two standard methods of determining delaminated areas in bridge decks; sounding with a metal object or a chain drag and sounding with an electro-mechanical sounding system (Delamtect). Sounding with a metal object or chain drag is time consuming and the accuracy is dependent on the ear of the operator and may be affected by traffic noise. The Delamtect requires less field time but the graphical traces require that data reduction be done in the office. A recently developed method of detecting delamination is infrared thermography. This method is based on the temperature difference between sound and delaminated concrete. A contract was negotiated with Donohue and Associates, Inc. of Sheboygan, Wisconsin, to survey 18 p.c. concrete overlaid bridge decks in Iowa using the infrared thermography method of detecting delaminations.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
This paper proposes an automatic hand detection system that combines the Fourier-Mellin Transform along with other computer vision techniques to achieve hand detection in cluttered scene color images. The proposed system uses the Fourier-Mellin Transform as an invariant feature extractor to perform RST invariant hand detection. In a first stage of the system a simple non-adaptive skin color-based image segmentation and an interest point detector based on corners are used in order to identify regions of interest that contains possible matches. A sliding window algorithm is then used to scan the image at different scales performing the FMT calculations only in the previously detected regions of interest and comparing the extracted FM descriptor of the windows with a hand descriptors database obtained from a train image set. The results of the performed experiments suggest the use of Fourier-Mellin invariant features as a promising approach for automatic hand detection.
Resumo:
Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.
Resumo:
The large and growing number of digital images is making manual image search laborious. Only a fraction of the images contain metadata that can be used to search for a particular type of image. Thus, the main research question of this thesis is whether it is possible to learn visual object categories directly from images. Computers process images as long lists of pixels that do not have a clear connection to high-level semantics which could be used in the image search. There are various methods introduced in the literature to extract low-level image features and also approaches to connect these low-level features with high-level semantics. One of these approaches is called Bag-of-Features which is studied in the thesis. In the Bag-of-Features approach, the images are described using a visual codebook. The codebook is built from the descriptions of the image patches using clustering. The images are described by matching descriptions of image patches with the visual codebook and computing the number of matches for each code. In this thesis, unsupervised visual object categorisation using the Bag-of-Features approach is studied. The goal is to find groups of similar images, e.g., images that contain an object from the same category. The standard Bag-of-Features approach is improved by using spatial information and visual saliency. It was found that the performance of the visual object categorisation can be improved by using spatial information of local features to verify the matches. However, this process is computationally heavy, and thus, the number of images must be limited in the spatial matching, for example, by using the Bag-of-Features method as in this study. Different approaches for saliency detection are studied and a new method based on the Hessian-Affine local feature detector is proposed. The new method achieves comparable results with current state-of-the-art. The visual object categorisation performance was improved by using foreground segmentation based on saliency information, especially when the background could be considered as clutter.
Resumo:
Les changements sont faits de façon continue dans le code source des logiciels pour prendre en compte les besoins des clients et corriger les fautes. Les changements continus peuvent conduire aux défauts de code et de conception. Les défauts de conception sont des mauvaises solutions à des problèmes récurrents de conception ou d’implémentation, généralement dans le développement orienté objet. Au cours des activités de compréhension et de changement et en raison du temps d’accès au marché, du manque de compréhension, et de leur expérience, les développeurs ne peuvent pas toujours suivre les normes de conception et les techniques de codage comme les patrons de conception. Par conséquent, ils introduisent des défauts de conception dans leurs systèmes. Dans la littérature, plusieurs auteurs ont fait valoir que les défauts de conception rendent les systèmes orientés objet plus difficile à comprendre, plus sujets aux fautes, et plus difficiles à changer que les systèmes sans les défauts de conception. Pourtant, seulement quelques-uns de ces auteurs ont fait une étude empirique sur l’impact des défauts de conception sur la compréhension et aucun d’entre eux n’a étudié l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes. Dans cette thèse, nous proposons trois principales contributions. La première contribution est une étude empirique pour apporter des preuves de l’impact des défauts de conception sur la compréhension et le changement. Nous concevons et effectuons deux expériences avec 59 sujets, afin d’évaluer l’impact de la composition de deux occurrences de Blob ou deux occurrences de spaghetti code sur la performance des développeurs effectuant des tâches de compréhension et de changement. Nous mesurons la performance des développeurs en utilisant: (1) l’indice de charge de travail de la NASA pour leurs efforts, (2) le temps qu’ils ont passé dans l’accomplissement de leurs tâches, et (3) les pourcentages de bonnes réponses. Les résultats des deux expériences ont montré que deux occurrences de Blob ou de spaghetti code sont un obstacle significatif pour la performance des développeurs lors de tâches de compréhension et de changement. Les résultats obtenus justifient les recherches antérieures sur la spécification et la détection des défauts de conception. Les équipes de développement de logiciels doivent mettre en garde les développeurs contre le nombre élevé d’occurrences de défauts de conception et recommander des refactorisations à chaque étape du processus de développement pour supprimer ces défauts de conception quand c’est possible. Dans la deuxième contribution, nous étudions la relation entre les défauts de conception et les fautes. Nous étudions l’impact de la présence des défauts de conception sur l’effort nécessaire pour corriger les fautes. Nous mesurons l’effort pour corriger les fautes à l’aide de trois indicateurs: (1) la durée de la période de correction, (2) le nombre de champs et méthodes touchés par la correction des fautes et (3) l’entropie des corrections de fautes dans le code-source. Nous menons une étude empirique avec 12 défauts de conception détectés dans 54 versions de quatre systèmes: ArgoUML, Eclipse, Mylyn, et Rhino. Nos résultats ont montré que la durée de la période de correction est plus longue pour les fautes impliquant des classes avec des défauts de conception. En outre, la correction des fautes dans les classes avec des défauts de conception fait changer plus de fichiers, plus les champs et des méthodes. Nous avons également observé que, après la correction d’une faute, le nombre d’occurrences de défauts de conception dans les classes impliquées dans la correction de la faute diminue. Comprendre l’impact des défauts de conception sur l’effort des développeurs pour corriger les fautes est important afin d’aider les équipes de développement pour mieux évaluer et prévoir l’impact de leurs décisions de conception et donc canaliser leurs efforts pour améliorer la qualité de leurs systèmes. Les équipes de développement doivent contrôler et supprimer les défauts de conception de leurs systèmes car ils sont susceptibles d’augmenter les efforts de changement. La troisième contribution concerne la détection des défauts de conception. Pendant les activités de maintenance, il est important de disposer d’un outil capable de détecter les défauts de conception de façon incrémentale et itérative. Ce processus de détection incrémentale et itérative pourrait réduire les coûts, les efforts et les ressources en permettant aux praticiens d’identifier et de prendre en compte les occurrences de défauts de conception comme ils les trouvent lors de la compréhension et des changements. Les chercheurs ont proposé des approches pour détecter les occurrences de défauts de conception, mais ces approches ont actuellement quatre limites: (1) elles nécessitent une connaissance approfondie des défauts de conception, (2) elles ont une précision et un rappel limités, (3) elles ne sont pas itératives et incrémentales et (4) elles ne peuvent pas être appliquées sur des sous-ensembles de systèmes. Pour surmonter ces limitations, nous introduisons SMURF, une nouvelle approche pour détecter les défauts de conception, basé sur une technique d’apprentissage automatique — machines à vecteur de support — et prenant en compte les retours des praticiens. Grâce à une étude empirique portant sur trois systèmes et quatre défauts de conception, nous avons montré que la précision et le rappel de SMURF sont supérieurs à ceux de DETEX et BDTEX lors de la détection des occurrences de défauts de conception. Nous avons également montré que SMURF peut être appliqué à la fois dans les configurations intra-système et inter-système. Enfin, nous avons montré que la précision et le rappel de SMURF sont améliorés quand on prend en compte les retours des praticiens.
Resumo:
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.
Resumo:
Recent work has suggested that for some tasks, graphical displays which visually integrate information from more than one source offer an advantage over more traditional displays which present the same information in a separated format. Three experiments are described which investigate this claim using a task which requires subjects to control a dynamic system. In the first experiment, the integrated display is compared to two separated displays, one an animated mimic diagram, the other an alphanumeric display. The integrated display is shown to support better performance in a control task, but experiment 2 shows that part of this advantage may be due to its analogue nature. Experiment 3 considers performance on a fault detection task, and shows no difference between the integrated and separated displays. The paper concludes that previous claims made for integrated displays may not generalize from monitoring to control tasks.