857 resultados para ORIENTATION FLUCTUATIONS
Resumo:
Atomic force microscopy (AFM) in situ has been used to observe the cold disassembly dynamics of microtubules at a previously unrealised spatial resolution. Microtubules either electrostatically or covalently bound to aminosilane surfaces disassembled at room temperature under buffer solutions with no free tubulin present. This process was followed by taking sequential tapping-mode AFM images and measuring the change in the microtubule end position as a function of time, with an spatial accuracy down to +/-20nm and a temporal accuracy of +/-1s. As well as giving average disassembly rates on the order of 1-10 tubulin monomers per second, large fluctuations in the disassembly rate were revealed, indicating that the process is far from smooth and linear under these experimental conditions. The surface bound rates measured here are comparable to the rates for GMPCPP-tubulin microtubules free in solution, suggesting that inhibition of tubulin curvature through steric hindrance controls the average, relatively low disassembly rate. The large fluctuations in this rate are thought to be due to multiple pathways in the kinetics of disassembly with differing rate constants and/or stalling due to defects in the microtubule lattice. Microtubules that were covalently bound to the surface left behind the protofilaments covalently cross-linked to the aminosilane via glutaraldehyde during the disassembly process. Further work is needed to quantitatively assess the effects of surface binding on protofibril disassembly rates, reveal any differences in disassembly rates between the plus and minus ends and to enable assembly as well as disassembly to be imaged in the microscope fluid cell in real-time.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.
Resumo:
O trauma crânio-encefálico contuso (TCEC) é freqüentemente seguido pela amnésia pós-traumática (APT), caracterizada como um estado transitório de confusão e desorientação. Sua duração tem sido utilizada para quantificar a gravidade do TCEC e prever distúrbios nas funções cognitivas, assim como para antever as alterações na capacidade funcional das vítimas pós-trauma. O Galveston Orientation Amnesia Test (GOAT) é o primeiro instrumento sistematizado criado e o mais amplamente utilizado para avaliar a APT. Este artigo apresenta esse instrumento, as bases conceituais para seu desenvolvimento e a adaptação e validação do GOAT para cultura brasileira. Além disso, descreve sua aplicação e comenta as restrições do seu uso. Resultados de pesquisas realizadas em nosso meio contribuíram para as evidências sobre a validade do GOAT. Também apontaram os indicadores do momento pós-trauma em que o GOAT deve ser aplicado e destacaram as dificuldades no uso desse instrumento.
Resumo:
Crystallographic data about T-Cell Receptor - peptide - major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.
Resumo:
INTRODUCTION: Lumbar spinal stenosis (LSS) treatment is based primarily on the clinical criteria providing that imaging confirms radiological stenosis. The radiological measurement more commonly used is the dural sac cross-sectional area (DSCA). It has been recently shown that grading stenosis based on the morphology of the dural sac as seen on axial T2 MRI images, better reflects severity of stenosis than DSCA and is of prognostic value. This radiological prospective study investigates the variability of surface measurements and morphological grading of stenosis for varying degrees of angulation of the T2 axial images relative to the disc space as observed in clinical practice. MATERIALS AND METHODS: Lumbar spine TSE T2 three-dimensional (3D) MRI sequences were obtained from 32 consecutive patients presenting with either suspected spinal stenosis or low back pain. Axial reconstructions using the OsiriX software at 0°, 10°, 20° and 30° relative to the disc space orientation were obtained for a total of 97 levels. For each level, DSCA was digitally measured and stenosis was graded according to the 4-point (A-D) morphological grading by two observers. RESULTS: A good interobserver agreement was found in grade evaluation of stenosis (k = 0.71). DSCA varied significantly as the slice orientation increased from 0° to +10°, +20° and +30° at each level examined (P < 0.0001) (-15 to +32% at 10°, -24 to +143% at 20° and -29 to +231% at 30° of slice orientation). Stenosis definition based on the surface measurements changed in 39 out of the 97 levels studied, whereas the morphology grade was modified only in two levels (P < 0.01). DISCUSSION: The need to obtain continuous slices using the classical 2D MRI acquisition technique entails often at least a 10° slice inclination relative to one of the studied discs. Even at this low angulation, we found a significantly statistical difference between surface changes and morphological grading change. In clinical practice, given the above findings, it might therefore not be necessary to align the axial cuts to each individual disc level which could be more time-consuming than obtaining a single series of axial cuts perpendicular to the middle of the lumbar spine or to the most stenotic level. In conclusion, morphological grading seems to offer an alternative means of assessing severity of spinal stenosis that is little affected by image acquisition technique.
Resumo:
With each passing election, U.S. political campaigns have renewed their efforts in courting the “Latino vote,” yet the Latino population is not a culturally homogenous voting bloc. This study examined how cultural identifications and acculturation attitudes in U.S. born Mexican Americans interacted with socioeconomic status (SES) to predict political orientation. Individuals who held stronger Mexican identity and supported biculturalism as an acculturation strategy had a more liberal orientation, while belonging to a higher SES group and holding stronger assimilation attitudes predicted a less liberal orientation. Mexican cultural identification interacted with SES such that those who held a weaker Mexican identity, but came from a higher social class were less liberal and more moderate in their political orientation. Weak Mexican identification and higher SES also predicted weaker endorsement of bicultural acculturation attitudes, which in turn, mediated the differences in political orientation. The acceptance of one’s ethnic identity and endorsement of bicultural attitudes predicted a more liberal political orientation. In light of these findings, political candidates should be cautious in how they pander to Latino constituents—referencing the groups’ ethnic culture or customs may distance constituents who are not strongly identified with their ethnic culture.
Resumo:
Red blood cells (RBCs) present unique reversible shape deformability, essential for both function and survival, resulting notably in cell membrane fluctuations (CMF). These CMF have been subject of many studies in order to obtain a better understanding of these remarkable biomechanical membrane properties altered in some pathological states including blood diseases. In particular the discussion over the thermal or metabolic origin of the CMF has led in the past to a large number of investigations and modeling. However, the origin of the CMF is still debated. In this article, we present an analysis of the CMF of RBCs by combining digital holographic microscopy (DHM) with an orthogonal subspace decomposition of the imaging data. These subspace components can be reliably identified and quantified as the eigenmode basis of CMF that minimizes the deformation energy of the RBC structure. By fitting the observed fluctuation modes with a theoretical dynamic model, we find that the CMF are mainly governed by the bending elasticity of the membrane and that shear and tension elasticities have only a marginal influence on the membrane fluctations of the discocyte RBC. Further, our experiments show that the role of ATP as a driving force of CMF is questionable. ATP, however, seems to be required to maintain the unique biomechanical properties of the RBC membrane that lead to thermally excited CMF.
Resumo:
In this paper we present a simple theory-based measure of the variations in aggregate economic efficiency: the gap between the marginal product of labor and the household s consumption/leisure tradeoff. We show that this indicator corresponds to the inverse of the markup of price over social marginal cost, and give some evidence in support of this interpretation. We then show that, with some auxilliary assumptions our gap variable may be used to measure the efficiency costs of business fluctuations. We find that the latter costs are modest on average. However, to the extent the flexible price equilibrium is distorted, the gross efficiency losses from recessions and gains from booms may be large. Indeed, we find that the major recessions involved large efficiency losses. These results hold for reasonable parameterizations of the Frisch elasticity of labor supply, the coefficient of relative risk aversion, and steady state distortions.
Resumo:
The Orientation Center newsletter is produced three times a year, and includes articles written by students, staff, and former students. It also contains news about what is happening to other students who have been in the Center.