960 resultados para OPTIMAL-GROWTH TEMPERATURES


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The murine sarcoma virus MuSVts110 exhibits an alternative RNA splicing pattern. Like other simple retroviruses, MuSVts110 pre-mRNA splicing is balanced to allow the production of both spliced and unspliced RNA during the replicative cycle. In addition to balance, MuSVts110 RNA splicing exhibits a unique growth-temperature restriction to splicing; temperatures below 33$\sp\circ$C are permissive for splicing while temperatures of 37$\sp\circ$C or above are non-permissive. Previous work has established that this thermosensitive splicing phenotype is mediated in cis by viral transcript features. Here we show that at least three sequence elements regulate the MuSVts110 splicing phenotype. First, the MuSVts110 branchpoint (BP) and poly-pyrimidine tract (PPT) were found to be determinants of overall splicing efficiency. Wild-type MuSVts110 possesses a weak BP and PPT adjacent to the 3$\sp\prime$ splice site. Introduction of a strong BP caused MuSVts110 splicing to proceed to virtual completion in vivo, thus losing any vestige of balance or thermosensitivity. In in vitro splicing extracts, the strong BP overcame a blockade to wt MuSVts110 splicing at both the first and second catalytic steps. Weakening the consensus nature of the strong BP allowed the recovery of thermosensitive splicing in vivo, and reinstated the blockades to splicing in vitro, arguing that a suboptimal BP is an unusual manifestation of the proportional splicing pattern of retroviruses. The PPT is essential for accurate recognition of the BP sequence by the splicing machinery. Lengthening the PPT of MuSVts110 from 9 to 19 consecutive pyrimidines increased the overall efficiency of splicing in vivo dramatically, but was less effective than the strong BP in overriding the restriction on splicing imposed by high growth temperatures. Finally, decreasing gradually the overall size of the intron unexpectedly reduced splicing efficiency at growth temperatures permissive for splicing, suggesting that non-conserved sequences within the intron of MuSVts110 participate in splicing regulation as well. Taken together, these results suggest a mechanism of control in which MuSVts110 splicing is modulated by the entire intron, but principally by suboptimal signals at the splice acceptor site. Furthermore, this retroviral system provides a powerful genetic method for selection and analysis of mutations that affect splicing. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Epidemiological studies have shown cadmium to induce cancer in humans, while experimental studies have proven this metal to be a potent tumor inducer in animals. However, cadmium appears nonmutagenic in most prokaryotic and eukaryotic mutagenesis assays. In this study, we present the identification of mutations in normal rat kidney cells infected with the mutant MuSVts110 retrovirus (6m2 cells) as a result of treatment with cadmium chloride. The detection of these mutations was facilitated by the use of a novel mutagenesis assay established in this laboratory. The 6m2 reversion assay is a positive selection system based on the conditional expression of the MuSVts110 v-mos gene. In MuSVts110 the gag and mos genes are fused out of frame, thus the translation of the v-mos sequence requires a frameshift in the genomic RNA. In 6m2 cells this frameshift is accomplished by the temperature-dependent splicing of the primary MuSVts110 transcript. Splicing of MuSVts110, which is mediated by cis-acting sequences, occurs when 6m2 cells are grown at 33$\sp\circ$C and below, but not at 39$\sp\circ$C. Therefore, 6m2 cells appear transformed at low growth temperatures, but take on a morphologically normal appearance when grown at high temperatures. The treatment of 6m2 cells with cadmium chloride resulted in the outgrowth of a number of cells that reverted to the transformed state at high growth temperatures. Analysis of the viral proteins expressed in these cadmium-induced 6m2 revertants suggested that they contained mutations in their MuSVts110 DNA. Sequencing of the viral DNA from three revertants that constitutively expressed the P85$\sp{gag{-}mos}$ transforming protein revealed five different mutations. The Cd-B2 revertant contained three of those mutations: an A-to-G transition 48 bases downstream of the MuSVts110 3$\sp\prime$ splice site, plus a G-to-T and an A-to-T transversion 84 and 100 bases downstream of the 5$\sp\prime$ splice site, respectively. The Cd-15-5 revertant also contained a point mutation, a T-to-C transition 46 bases downstream of the 5$\sp\prime$ splice site, while Cd-10-5 contained a three base deletion of MuSVts110 11 bases upstream of the 3$\sp\prime$ splice site. A fourth revertant, Cd-10, expressed a P100$\sp{gag{-}mos}$ transforming protein, and was found to have a two base deletion. This deletion accomplished the frameshift necessary for v-mos expression, but did not alter MuSVts110 RNA splicing and the expression of p85$\sp{gag{-}mos}.$ Lastly, sequencing of the MuSVts110 DNA from three spontaneous revertants revealed the same G to T transversion in each one. This was the same mutation that was found in the Cd-B2 revertant. These findings provide the first example of mutations resulting from exposure to cadmium and suggest, by the difference in each mutation, the complexity of the mechanism utilized by cadmium to induce DNA damage. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have examined the relationship between Fe and blooms of the toxic dinoflagellate Alexandrium tamarense (Balech) (formerly Gonyaulax tamarensis var. excavata (Lebour)) using a chemical method that estimates the biological availability of Fe in seawater. The Fe requirement for optimal growth of A. tamarense in sequential batch culture (ca 3 nM 'available' Fe) was compared with Fe concentrations in waters of the Gulf of Maine, USA. Results indicated that Fe did not limit growth of the organism in nearshore coastal waters or over Georges Bank, but that the organism may have been Fe-limited in Gulf of Maine basin waters. The distribution of A. tamarense in the Gulf of Maine is consistent with these Fe data. Red tide outbreaks in the nearshore environment did not correlate with changes in total Fe or the estimated Fe availability. Although Fe did not appear to trigger outbreaks of A. tamarense in Maine coastal waters, the findings are consistent with suggestions that pulsed inputs of Fe may be important for the development of toxic dinoflagellate blooms in regions (e.g. Florida) where outbreaks are initiated offshore.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cells infected with the conditionally defective MuSVts110 mutant of Moloney murine sarcoma virus are transformed at 33$\sp\circ$C but appear morphologically normal at 39$\sp\circ$C. The molecular basis for this phenotype is as follows: MuSVts110 contains a 1487 nucleotide central deletion that has truncated the 3$\sp\prime$ end to the gag gene and the 5$\sp\prime$ end of the mos gene. The resulting gag-mos junction is out-of-frame and the v-mos protein is not expressed. At 33$\sp\circ$C or lower, a splicing event is activated such that a 431 base intron is removed to realign the gag and mos gene in-frame, allowing the expression of a transforming protein P85$\sp{gag-mos}$. Temperature-dependent splicing appeared to be an intrinsic property of MuSVts110 transcripts and not a general feature of pre-mRNA splicing in 6m2 cells since splicing activity of a heterologous transcript in the same cells did not vary with temperature. The possibility that the splice event was not temperature-sensitive, but that the accumulation of spliced transcript at the lower growth temperatures was due to its selective thermolability was ruled out as stability studies revealed that the relative turnover rates of the unspliced and spliced MuSVts110 transcripts were not affected by temperature.^ The consensus sequences containing the splice sites activated in the MuSVts110 mutant (5$\sp\prime$ gag and 3$\sp\prime$ mos) are present, but not utilized, in wild-type MuSV-124. To test the hypothesis that it was the reduction of the 1919 base intervening sequence in MuSV-124 to 431 bases in MuSVts110 which activated splicing, the identical 1487 base deletion was introduced into cloned wild-type MuSV-124 DNA to create the MuSVts110 equivalent, ts32.^ To examine conditions permissive for splicing, we assayed splice site activation in a series of MuSV-124 "intron-modification" mutants. Data suggest that splicing in wild-type MuSV-124 may be blocked due to the lack of a proximal branchpoint sequence, but can be activated by those intron mutations which reposition a branch site closer to the 3$\sp\prime$ splice site. (Abstract shortened with permission of author.) ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Colony counts on high and low-nutrient agar media incubated at 2 and 20 °C, Acridine Orange Direct Counts and biomasses are reported for sediments of the Sierra Leone Abyssal Plain. All isolates from low-nutrient agars also grew in nutrient-rich seawater broth (100 % SWB). However, a greater proportion of the 2 °C than of the 20 °C isolates grew in 2.5% SWB, containing 125 mg/l peptone and 25 mg/l yeast extract. Only 14 strains or 12.7% of the 2 °C isolates, but none of the 20 °C isolates, grew in 0.25 % SWB. Psychrophilic bacteria with maximum growth temperatures below 12 °C, isolated at 2 °C, were predominant among the cultivable bacteria from the surface layer. They required seawater for growth and belonged mainly to the Gram-negative genera Alteromonas and Vibrio. In contrast to the earlier view that psychrophily is connected with the Gram-negative cell type, it was found that cold-adapted bacteria of the Gram-positive genus Bacillus predominated in the 4 to 6 cm layer. The 20 °C isolates, however, were mostly Gram-positive, mesophilic, not dependent on seawater for growth, not able to utilize organic substrates at 4 °C, and belonged mainly to the genus Bacillus and to the Gram-positive cocci. The majority of the mesophilic bacilli most likely evolved from dormant spores, but not from actively metabolizing cells. It can be concluded that only the strains isolated at 2 °C can be regarded as indigenous to the deep-sea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During the 'Polarstern' expedition ARK-IV/2 in June 1987, water samples from 8 stations were taken to study biomass and substrate utilization of cold adapted bacteria. Bacterial biomasses determined from acridine orange direct counts (AODC) were between 0.4 and 31.4 µ/g C/l, and ATP concentrations amounted from <0.1 to 40 ng/l. Colony counts on seawater agar reached only 0.1% of AODC, but with the MPN-method 1 to 10% of AODC were recorded. With 14C-glutamic acid or 14C-glucose as tracer substrate in oligotrophic broth containing 0.5 mg trypticase and 0.05 mg yeast extract per liter of seawater, obligately oligotrophic bacteria could be detected in one water sample. Although incubation was at 2 °C, only psychrotrophic bacteria showing growth temperatures between 1 and 30 °C were obtained. Organic substrate utilizations by 106 isolates were tested at 4 and 20 °C. Most carbohydrates, organic acids, alcohols, and alanine were assimilated at both temperatures, but arginine, aspartate and ornithine were utilized only at 20 °C by almost all strains.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

From enrichment cultures in dialysis chambers held in natural seawater tanks, 104 strains were isolated and kept in culture. All strains proved to be Gram-negative and psychrotrophic, having optimum growth temperatures of between 20 and 24 °C. Maximal growth temperatures were 30 to 37 °C, or even higher. With 55 isolates, substrate utilizations in Biolog MicroPlates were determined, and the obtained metabolic fingerprints used for clustering. Five groups could be distinguished at the 80% similarity level. Fifteen strains belonged to cluster 1, seven strains to cluster 2, and each of the clusters 3 and 4 contained nine strains. Cluster 5 can be divided into subcluster 5a and 5b, with 6 strains showing a few substrates metabolized, and 9 strains without any reactions, or weak reactions for one or two substrates, respectively. Each cluster could be characterized by specific metabolic fingerprints. Strains from cluster 1 metabolized N-acetyl-D-glucosamine, alpha-hydroxybutyric acid and gamma-hydroxybutyric acid, strains from cluster 2 citric acid, formic acid, thymidine and putrescine, strains from cluster 3 glycyl-L-aspartic acid, glycyl-L-glutamic acid, L-threonine and inosine, whereas strains from cluster 4 metabolized alpha-cyclodextrin and N-acetyl-D-galactosamine, typically. Methylamine was not utilized by the isolates, but strains from cluster 1, 2 and 3 could grow on basal seawater agar. Morphological characteristics and photomicrographs of the oligotrophic strains are presented. Due to their typical morphologies and ampicillin resistence, the nine strains from cluster 3 can be regarded as new species of the genus Planctomyces. These bacteria have not been cultivated before.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rising atmospheric CO2 concentrations could cause a calcium carbonate subsaturation of Arctic surface waters in the next 20 yr, making these waters corrosive for calcareous organisms. It is presently unknown what effects this will have on Arctic calcifying organisms and the ecosystems of which they are integral components. So far, acidification effects on crustose coralline red algae (CCA) have only been studied in tropical and Mediterranean species. In this work, we investigated calcification rates of the CCA Lithothamnion glaciale collected in northwest Svalbard in laboratory experiments under future atmospheric CO2 concentrations. The algae were exposed to simulated Arctic summer and winter light conditions in 2 separate experiments at optimum growth temperatures. We found a significant negative effect of increased CO2 levels on the net calcification rates of L. glaciale in both experiments. Annual mean net dissolution of L. glaciale was estimated to start at an aragonite saturation state between 1.1 and 0.9 which is projected to occur in parts of the Arctic surface ocean between 2030 and 2050 if emissions follow 'business as usual' scenarios (SRES A2; IPCC 2007). The massive skeleton of CCA, which consist of more than 80% calcium carbonate, is considered crucial to withstanding natural stresses such as water movement, overgrowth or grazing. The observed strong negative response of this Arctic CCA to increased CO2 levels suggests severe threats of the projected ocean acidification for an important habitat provider in the Arctic coastal ocean.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The genome sequence of the extremely thermophilic archaeon Methanococcus jannaschii provides a wealth of data on proteins from a thermophile. In this paper, sequences of 115 proteins from M. jannaschii are compared with their homologs from mesophilic Methanococcus species. Although the growth temperatures of the mesophiles are about 50°C below that of M. jannaschii, their genomic G+C contents are nearly identical. The properties most correlated with the proteins of the thermophile include higher residue volume, higher residue hydrophobicity, more charged amino acids (especially Glu, Arg, and Lys), and fewer uncharged polar residues (Ser, Thr, Asn, and Gln). These are recurring themes, with all trends applying to 83–92% of the proteins for which complete sequences were available. Nearly all of the amino acid replacements most significantly correlated with the temperature change are the same relatively conservative changes observed in all proteins, but in the case of the mesophile/thermophile comparison there is a directional bias. We identify 26 specific pairs of amino acids with a statistically significant (P < 0.01) preferred direction of replacement.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyamines are required for optimal growth and function of cells. Regulation of their cellular homeostasis is therefore tightly controlled. The key regulatory enzyme for polyamine catabolism is the spermidine/spermine N1-acetyltransferase (SSAT). Depletion of cellular polyamines has been associated with inhibition of growth and programmed cell death. To investigate the physiological function SSAT, we generated a transgenic rat line overexpressing the SSAT gene under the control of the inducible mouse metallothionein I promoter. Administration of zinc resulted in a marked induction of pancreatic SSAT, overaccumulation of putrescine, and appearance of N1-acetylspermidine with extensive depletion of spermidine and spermine in transgenic animals. The activation of pancreatic polyamine catabolism resulted in acute pancreatitis. In nontransgenic animals, an equal dose of zinc did not affect pancreatic polyamine pools, nor did it induce pancreatitis. Acetylated polyamines, products of the SSAT-catalyzed reaction, are metabolized further by the polyamine oxidase (PAO) generating hydrogen peroxide, which might cause or contribute to the pancreatic inflammatory process. Administration of specific PAO inhibitor, MDL72527 [N1,N2-bis(2,3-butadienyl)-1,4-butanediamine], however, did not affect the histological score of the pancreatitis. Induction of SSAT by the polyamine analogue N1,N11-diethylnorspermine reduced pancreatic polyamines levels only moderately and without signs of organ inflammation. In contrast, the combination of N1,N11-diethylnorspermine with MDL72527 dramatically activated SSAT, causing profound depletion of pancreatic polyamines and acute pancreatitis. These results demonstrate that acute induction of SSAT leads to pancreatic inflammation, suggesting that sufficient pools of higher polyamine levels are essential to maintain pancreatic integrity. This inflammatory process is independent of the production of hydrogen peroxide by PAO.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrimidine adducts in cellular DNA arise from modification of the pyrimidine 5,6-double bond by oxidation, reduction or hydration. The biological outcome includes increased mutation rate and potential lethality. A major DNA N-glycosylase responsible for the excision of modified pyrimidine bases is the base excision repair (BER) glycosylase endonuclease III, for which functional homologs have been identified and characterized in Escherichia coli, yeast and humans. So far, little is known about how hyperthermophilic Archaea cope with such pyrimidine damage. Here we report characterization of an endonuclease III homolog, PaNth, from the hyperthermophilic archaeon Pyrobaculum aerophilum, whose optimal growth temperature is 100°C. The predicted product of 223 amino acids shares significant sequence homology with several [4Fe-4S]-containing DNA N-glycosylases including E.coli endonuclease III (EcNth). The histidine-tagged recombinant protein was expressed in E.coli and purified. Under optimal conditions of 80–160 mM NaCl and 70°C, PaNth displays DNA glycosylase/β-lyase activity with the modified pyrimidine base 5,6-dihydrothymine (DHT). This activity is enhanced when DHT is paired with G. Our data, showing the structural and functional similarity between PaNth and EcNth, suggests that BER of modified pyrimidines may be a conserved repair mechanism in Archaea. Conserved amino acid residues are identified for five subfamilies of endonuclease III/UV endonuclease homologs clustered by phylogenetic analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many bacteria, accumulation of K+ at high external osmolalities is accompanied by accumulation of glutamate. To determine whether there is an obligatory relationship between glutamate and K+ pools, we studied mutant strains of Salmonella typhimurium with defects in glutamate synthesis. Enteric bacteria synthesize glutamate by the combined action of glutamine synthetase and glutamate synthase (GS/GOGAT cycle) or the action of biosynthetic glutamate dehydrogenase (GDH). Activity of the GS/GOGAT cycle is required under nitrogen-limiting conditions and is decreased at high external ammonium/ammonia ((NH4)+) concentrations by lowered synthesis of GS and a decrease in its catalytic activity due to covalent modification (adenylylation by GS adenylyltransferase). By contrast, GDH functions efficiently only at high external (NH4)+ concentrations, because it has a low affinity for (NH4)+. When grown at low concentrations of (NH4)+ (< or = 2 mM), mutant strains of S. typhimurium that lack GOGAT and therefore are dependent on GDH have a low glutamate pool and grow slowly; we now demonstrate that they have a low K+ pool. When subjected to a sudden (NH4)+ upshift, strains lacking GS adenylyltransferase drain their glutamate pool into glutamine and grow very slowly; we now find that they also drain their K+ pool. Restoration of the glutamate pool in these strains at late times after shift was accompanied by restoration of the K+ pool and a normal growth rate. Taken together, the results indicate that glutamate is required to maintain the steady-state K+ pool -- apparently no other anion can substitute as a counter-ion for free K+ -- and that K+ glutamate is required for optimal growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding flow path connectivity within a geothermal reservoir is a critical component for efficiently producing sustained flow rates of hot fluids from the subsurface. I present a new approach for characterizing subsurface fracture connectivity that combines petrographic and cold cathodoluminescence (CL) microscopy with stable isotope analysis (δ18O and δ13C) and clumped isotope (Δ47) thermometry of fracture-filling calcite cements from a geothermal reservoir in northern Nevada. Calcite cement samples were derived from both drill cuttings and core samples taken at various depths from wells within the geothermal field. CL microscopy of some fracture filling cements shows banding parallel to the fracture walls as well as brecciation, indicating that the cements are related to fracture opening and fault slip. Variations in trace element composition indicated by the luminescence patterns reflect variations in the composition and source of fluids moving through the fractures as they opened episodically. Calcite δ13C and δ18O results also show significant variation among the sampled cements, reflecting multiple generations of fluids and fracture connectivity. Clumped isotope analyses performed on a subset of the cements analyzed for conventional δ18O and δ13C mostly show calcite growth temperatures around 150°C—above the current ambient rock temperature, which indicates a common temperature trend for the geothermal reservoir. However, calcite cements sampled along faults located within the well field showed both cold (18.7°C) and hot (226.1°C) temperatures. The anomalously cool temperature found along the fault, using estimates from clumped isotope thermometry, suggests a possible connection to surface waters for the geothermal source fluids for this system. This information may indicate that some of the faults within the well field are transporting meteoric water from the surface to be heated at depth, which then is circulated through a complex network of fractures and other faults.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles