808 resultados para OPTICAL-TRANSMISSION
Resumo:
ZnO thin films were grown on (0001)LiNbO3 substrates by the MOCVD technique. The substrate temperatures during growth were changed from 400 to 600 degrees C. The X-ray diffraction (XRD) pattern of the ZnO film showed a strong [002] reflection peak, and the peak intensity was dependent on substrate temperature. The ZnO columnar grains were highly oriented along the (002) direction when the film processing temperature was 600 degrees C. The optical transmission and PL results also indicated that highest crystalline quality of the ZnO films could be obtained at elevated temperatures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Large-sized (similar to 2 inch, 50.8 mm) gamma-UA102 single crystal has been grown by conventional Czochralski (Cz) method, but the crystal ha's a milky, dendriform center. The samples taken from transparent and milky parts were ground and examined by X-ray diffraction. All diffraction peaks could be indexed in gamma-LiAlO2. The crystal quality was characterized by X-ray rocking curve. The full-width at half-maximum (FWHM) values are 116.9 and 132.0 arcsec for transparent and milky parts, respectively. The vapor transport equilibrium (VTE) technique was introduced to modify the crystal quality. After 1000 degrees C/48 h, 1100 degrees C/48 h, 1200 degrees C/48 h VTE processes, the FWHM values dropped to 44.2 and 55.2 arcsec for transparent and milky part, respectively. The optical transmission of transparent part was greatly enhanced from 85% to 90%, and transmission of milky part from 75% to 80% in the range of 190 similar to 1900 nm at room temperature. When the VTE temperature was raised to 1300 degrees C, the sample cracked and FWHM values of transparent and milky parts were increased to 55.2 and 80.9 arcsec, respectively. By combining Cz technique with VTE technique, large-sized and high quality gamma-LiAlO2 crystal can be obtained.
Resumo:
gamma-LiAlO2 (LAO) single crystal has been grown by the Czochralski method. However, its quality was deteriorated due to lithium volatilization during the crystal growth. The full width at half maximum value drops from 116.9 to 44.2 arc sec after the LAO slice was treated by vapor transport equilibration at 1000, 1100, and 1200 degrees C/48 h in sequence. The treated slice shows higher optical transmission than the as-grown one in the measured wavelength range of 190-1900 nm, meanwhile, its absorption edge exhibits a blueshift. According to Raman spectra, the treated slice has homogeneous quality at different depths from surface to 0.01 mm. The expansion coefficient of the treated slice for a axis drops from 17.2398x10(-6)/degrees C to 16.5240x10(-6)/degrees C, and that for c axis drops from 10.7664x10(-6)/degrees C to 10.0786x10(-6)/degrees C.
Resumo:
g-LiAlO2 single crystal is a promising substrate for GaN heteroepitaxy. In this paper, we present the growth of large-sized LiAlO2 crystal by modified Czochralski method. The crystal quality was characterized by high-resolution X-ray diffraction and chemical etching. The results show that the as-grown crystal has perfect quality with the full width at half maximum (FWHM) of 17.7-22.6 arcsec and etch pits density of (0.3-2.2) x 10(4) cm(-2) throughout the crystal boule. The bottom of the crystal boule shows the best quality. The optical transmission spectra from UV to IR exhibits that the crystal is transparent from 0.2 to 5.5 mu m and becomes completely absorbing around 6.7 mu m wavelength. The optical absorption edge in near UV region is about 191 nm.
Resumo:
Non-polar (1 (1) over bar 00)m-plane ZnO thin film has been prepared on gamma-LiAlO2 (100)substrate via the low pressure metal organic chemical vapor deposition. Obvious intensity variation of the E-2 mode in the polarized Raman spectra and the absorption edge shift in the polarized optical transmission spectra indicate that the m-plane film exhibits optical anisotropy, which have applications in certain optical devices, such as the UV modulator and polarization-dependent beam switch. From the atomic force microscopy images, highly-oriented uniform-sized grains of rectangular shape were observed. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
O surgimento de novos serviços de telecomunicações tem provocado um enorme aumento no tráfego de dados nas redes de transmissão. Para atender a essa demanda crescente, novas tecnologias foram desenvolvidas e implementadas ao longo dos anos, sendo que um dos principais avanços está na área de transmissão óptica, devido à grande capacidade de transporte de informação da fibra óptica. A tecnologia que melhor explora a capacidade desse meio de transmissão atualmente é a multiplexação por divisão de comprimento de onda ou Wavelength Division Multiplexing (WDM) que permite a transmissão de diversos sinais utilizando apenas uma fibra óptica. Redes ópticas WDM se tornaram muito complexas, com enorme capacidade de transmissão de informação (terabits por segundo), para atender à explosão de necessidade por largura de banda. Nesse contexto, é de extrema importância que os recursos dessas redes sejam utilizados de forma inteligente e otimizada. Um dos maiores desafios em uma rede óptica é a escolha de uma rota e a seleção de um comprimento de onda disponível na rede para atender uma solicitação de conexão utilizando o menor número de recursos possível. Esse problema é bastante complexo e ficou conhecido como problema de roteamento e alocação de comprimento de onda ou, simplesmente, problema RWA (Routing and Wavelentgh Assignment problem). Muitos estudos foram realizados com o objetivo de encontrar uma solução eficiente para esse problema, mas nem sempre é possível aliar bom desempenho com baixo tempo de execução, requisito fundamental em redes de telecomunicações. A técnica de algoritmo genético (AG) tem sido utilizada para encontrar soluções de problemas de otimização, como é o caso do problema RWA, e tem obtido resultados superiores quando comparada com soluções heurísticas tradicionais encontradas na literatura. Esta dissertação apresenta, resumidamente, os conceitos de redes ópticas e de algoritmos genéticos, e descreve uma formulação do problema RWA adequada à solução por algoritmo genético.
Resumo:
In a surface stabilized ferroelectric liquid crystal cell, optical transmission oscillations have been revealed accompanying mechanical vibrations caused by fast field reversal. Special bookshelf textures, so-called "rainbow", were used in the experiments. Temperature dependences of the oscillation parameters have been studied. The temperature dependence of the oscillation frequency suggests that the some oscillation resonances correspond to modes of the liquid crystals.
Resumo:
We report a novel utilization of periodic arrays of carbon nanotubes in the realization of diffractive photonic crystal lenses. Carbon nanotube arrays with nanoscale dimensions (lattice constant 400 nm and tube radius 50 nm) displayed a negative refractive index in the optical regime where the wavelength is of the order of array spacing. A detailed computational analysis of band gaps and optical transmission through the nanotubes based planar, convex and concave shaped lenses was performed. Due to the negative-index these lenses behaved in an opposite fashion compared to their conventional counter parts. A plano-concave lens was established and numerically tested, displaying ultra-small focal length of 1.5 μm (∼2.3 λ) and a near diffraction-limited spot size of 400 nm (∼0.61 λ). © 2012 Elsevier B.V. All rights reserved.
Resumo:
Light transmission through a single subwavelength slit surrounded by periodic grooves in layered films consisting of Au and dielectric material is analyzed by the finite difference time domain method in two dimensions. The results show that the transmission field can be enhanced by the corrugations on the output plane, which is a supplementary explanation for the extraordinary optical transmission.
Resumo:
A distributed-feedback (DFB) laser and a high-speed electroabsorption (EA) modulator are integrated, on the basis of the selective area MOVPE growth (SAG) technique and the ridge waveguide structure, for a 10 Gbit s(-1) optical transmission system. The integrated DFB laser/EA modulator device is packaged in a compact module with a 20% optical coupling efficiency to the single-mode fibre. The typical threshold current is 15 mA, and the side-mode suppression ratio is over 40 dB with the single-mode operation at 1550 nm. The module exhibits 1.2 mW fibre output power at a laser gain current of 70 mA and a modulator bias voltage of 0 V. The 3 dB bandwidth is 12 GHz. A dynamic extinction ratio of over 10 dB has been successfully achieved under 10 Gbit s(-1) non-return to zero (NRZ) operation, and a clearly open eye diagram is obtained.
Resumo:
The fabrication of plasmonic very-small-aperture lasers is demonstrated in this letter. It is an integration of the surface plasmon structures and very-small-aperture lasers (VSAL). The experimental and numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field, and the power output can be enhanced 140% of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope. (C) 2007 American Institute of Physics.
Resumo:
Based oil rare equations of semiconductor laser, a symbolically-defined model for optical transmission system performance evaluation and network characterization in both time- and frequency domains is presented. The steady-state and small-signal characteristics, such as current-photon density curve, current-voltage curve, and input impedance, call be predicted from this model. Two important dynamic characteristics, second-order harmonic distortion and two-tone third-order intermodulation products, are evaluated under different driving conditions. Experiments show that the simulated results agree well with the published data. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The coupling of surface plasmons to the photonic modes in hexagonal textured metallic microcavity was studied. The modified photonic modes enable efficient coupling with the luminescence source in the microcavity. Hexagonal photonic crystal lattice has higher folding symmetry providing more channels for surface plasmon coupling in different in-plane directions, i.e., more isotropic light extraction profile than one-or two-dimensional gratings. Results show that strong coupling between surface plasmon modes and the waveguide mode in the microcavity has led to angle-selective enhanced light extraction and it was as much as 12 times more light extracted compare to planar microcavity. (c) 2006 American Institute of Physics.
Resumo:
A three dimensional analysis of a special class of anisotropic materials is presented. We introduce an extension of the Scattering Matrix Method (SMM) to investigate the behavior of anisotropic Photonic Crystal Slabs (PhCS) subject to external radiation. We show how the Fano effect can play a fundamental role in the realization of tunable optical devices. Moreover, we show how to utilize electron injection, electric field and temperature as parameters to control the Fano resonance shift in both isotropic and anisotropic materials as Si and Potassium Titanium Oxide Phosphate (KTP). We will see that because Fano modes are sensitive and controllable, a broad range of applications can be considered. (c) 2006 Optical Society of America