981 resultados para O(d-1) h-2->oh h
Resumo:
Resumen tomado de la publicación. Incluye capturas de pantalla de ordenador de dicho editor. Este documento está sujeto a una licencia de Reconocimiento-No Comercial-Compartir con la misma licencia 3.0 España de Creative Commons
Resumo:
Resumen tomado de la publicación. Se incluyen capturas de pantalla del ordenador sobre dicha herramienta. Documento actualizado a la versión 1.8.2 por Joan Martínez González en 2007. El presente manual está basado en un documento similar creado por Enrique Castro López-Tarruella: 'Moodle: Manual de Usuario. Una introducción a la herramienta base del Campus virtual de la ULPGC'
Resumo:
Resumen tomado de la publicación. Se incluyen capturas de pantalla del ordenador sobre dicha herramienta. Documento actualizado a la versión 1.8.2 por Joan Martínez González en 2007. El presente manual está basado en un documento similar creado por Enrique Castro López-Tarruella: 'Moodle: Manual de Usuario. Una introducción a la herramienta base del Campus virtual de la ULPGC'
Resumo:
Resumen tomado de la publicación. Incluye imágenes de capturas de pantalla del ordenador que refuerzan las explicaciones del curso
Resumo:
In this Paper, we study the invariant intervals, the global attractivity of the equilibrium points, and the asymptotic behavior of the solutions of the difference equation x(n) = ax(n-1) + bx(n-2) / c + dx(n-1)x(n-2), n =1, 2, ..., where a greater than or equal to 0, b, c, d > 0. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
ERK1 and ERK2 (ERK1/2) are central to the regulation of cell division, growth and survival. They are activated by phosphorylation of the Thr- and the Tyr- residues in their Thr-Glu-Tyr activation loops. The dogma is that dually-phosphorylated ERK1/2 constitute the principal activities in intact cells. We previously showed that, in neonatal rat cardiac myocytes, endothelin-1 and phorbol 12-myristate 13-acetate (PMA) powerfully and rapidly (maximal at ~ 5 min) activate ERK1/2. Here, we show that dually-phosphorylated ERK1/2 rapidly (< 2 min) appear in the nucleus following stimulation with endothelin-1. We characterized the active ERK1/2 species in myocytes exposed to endothelin-1 or PMA using MonoQ FPLC. Unexpectedly, two peaks of ERK1 and two peaks of ERK2 activity were resolved using in vitro kinase assays. One of each of these represented the dually-phosphorylated species. The other two represented activities for ERK1 or ERK2 which were phosphorylated solely on the Thr- residue. Monophosphothreonyl ERK1/2 represented maximally ~ 30% of total ERK1/2 activity after stimulation with endothelin-1 or PMA, and their kcat values were estimated to be minimally ~ 30% of the dually-phosphorylated species. Appearance of monophosphothreonyl ERK1/2 was rapid but delayed in comparison with dually-phosphorylated ERK1/2. Of 10 agonists studied, endothelin-1 and PMA were most effective in terms of ERK1/2 activation and in stimulating the appearance of monophosphothreonyl and dually-phosphorylated ERK1/2. Thus, enzymically active monophosphothreonyl ERK1/2 are formed endogenously following activation of the ERK1/2 cascade and we suggest that monophosphothreonyl ERK1/2 arise by protein tyrosine phosphatase-mediated dephosphorylation of dually-phosphorylated ERK1/2.
Resumo:
[Cu2(μO2CCH3)4(H2O)2], [CuCO3·Cu(OH)2], [CoSO4·7H2O], [Co((+)-tartrate)], and [FeSO4·7H2O] react with excess racemic (±)- 1,1′-binaphthyl-2,2′-diyl hydrogen phosphate {(±)-PhosH} to give mononuclear CuII, CoII and FeII products. The cobalt product, [Co(CH3OH)4(H2O)2]((+)-Phos)((−)-Phos) ·2CH3OH·H2O (7), has been identified by X-ray diffraction. The high-spin, octahedral CoII atom is ligated by four equatorial methanol molecules and two axial water molecules. A (+)- and a (−)-Phos− ion are associated with each molecule of the complex but are not coordinated to the metal centre. For the other CoII, CuII and FeII samples of similar formulation to (7) it is also thought that the Phos− ions are not bonded directly to the metal. When some of the CuII and CoII samples are heated under high vacuum there is evidence that the Phos− ions are coordinated directly to the metals in the products.
Resumo:
Although principally produced by the pancreas to degrade dietary proteins in the intestine, trypsins are also expressed in the nervous system and in epithelial tissues, where they have diverse actions that could be mediated by protease-activated receptors (PARs). We examined the biological actions of human trypsin IV (or mesotrypsin) and rat p23, inhibitor-resistant forms of trypsin. The zymogens trypsinogen IV and pro-p23 were expressed in Escherichia coli and purified to apparent homogeneity. Enteropeptidase cleaved both zymogens, liberating active trypsin IV and p23, which were resistant to soybean trypsin inhibitor and aprotinin. Trypsin IV cleaved N-terminal fragments of PAR(1), PAR(2), and PAR(4) at sites that would expose the tethered ligand (PAR(1) = PAR(4) > PAR(2)). Trypsin IV increased [Ca(2+)](i) in transfected cells expressing human PAR(1) and PAR(2) with similar potencies (PAR(1), 0.5 microm; PAR(2), 0.6 microm). p23 also cleaved fragments of PAR(1) and PAR(2) and signaled to cells expressing these receptors. Trypsin IV and p23 increased [Ca(2+)](i) in rat dorsal root ganglion neurons that responded to capsaicin and which thus mediate neurogenic inflammation and nociception. Intraplantar injection of trypsin IV and p23 in mice induced edema and granulocyte infiltration, which were not observed in PAR (-/-)(1)(trypsin IV) and PAR (-/-)(2) (trypsin IV and p23) mice. Trypsin IV and p23 caused thermal hyperalgesia and mechanical allodynia and hyperalgesia in mice, and these effects were absent in PAR (-/-)(2) mice but maintained in PAR (-/-)(1) mice. Thus, trypsin IV and p23 are inhibitor-resistant trypsins that can cleave and activate PARs, causing PAR(1)- and PAR(2)-dependent inflammation and PAR(2)-dependent hyperalgesia.
Resumo:
The chemisorption of CH4 on Pt{110}-(1 x 2) has been studied by vibrational analysis of the reaction pathway defined by the potential energy surface and, in time reversal, by first-principles molecular dynamics simulations of CH4 associative desorption, with the electronic structure treated explicitly using density functional theory. We find that the symmetric stretch vibration ν1 is strongly coupled to the reaction coordinate; our results therefore provide a firm theoretical basis for recently reported state-resolved reactivity measurements, which show that excitation of the ν1 normal mode is the most efficient way to enhance the reaction probability
Resumo:
Within target T lymphocytes, human immunodeficiency virus type I (HIV-1) encounters the retroviral restriction factor APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G; A3G), which is counteracted by the HIV-1 accessory protein Vif. Vif is encoded by intron-containing viral RNAs that are generated by splicing at 3' splice site (3'ss) A1 but lack splicing at 5'ss D2, which results in the retention of a large downstream intron. Hence, the extents of activation of 3'ss A1 and repression of D2, respectively, determine the levels of vif mRNA and thus the ability to evade A3G-mediated antiviral effects. The use of 3'ss A1 can be enhanced or repressed by splicing regulatory elements that control the recognition of downstream 5'ss D2. Here we show that an intronic G run (G(I2)-1) represses the use of a second 5'ss, termed D2b, that is embedded within intron 2 and, as determined by RNA deep-sequencing analysis, is normally inefficiently used. Mutations of G(I2)-1 and activation of D2b led to the generation of transcripts coding for Gp41 and Rev protein isoforms but primarily led to considerable upregulation of vif mRNA expression. We further demonstrate, however, that higher levels of Vif protein are actually detrimental to viral replication in A3G-expressing T cell lines but not in A3G-deficient cells. These observations suggest that an appropriate ratio of Vif-to-A3G protein levels is required for optimal virus replication and that part of Vif level regulation is effected by the novel G run identified here.
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
We use QCD sum rules to study the recently observed resonance-like structures in the pi(+)chi(c1) mass distribution, Z(1)(+) (4050) and Z(2)(+) (4250), considered as D*(+) (D) over bar*(0) and D(1)(+) (D) over bar (0) + D(+) (D) over bar (0)(1) molecules with the quantum number J(P) = 0(+) and J(P) = 1-, respectively. We consider the contributions of condensates up to dimension eight and work at leading order in alpha(s). We obtain m(D*D*) = (4.15 +/- 0.12) GeV, around 100 MeV above the D*D* threshold, and m(D1D) = (4.19 +/- 0.22) GeV, around 100 MeV below the D(1)D threshold. We conclude that the D*(+)(D) over bar*(0) state is probably a virtual state that is not related with the Z(1)(+) (4050) resonance-like structure. In the case of the D(1)D molecular state, considering the errors, its mass is consistent with both Z(1)(+)(4050) and Z(2)(+)(4250) resonance-like structures. Therefore, we conclude that no definite conclusion can be drawn for this state from the present analysis. (C) 2008 Elsevier B.V All rights reserved.
Resumo:
The effect of benzotriazole (BTAH) and tolytriazole (TTAH) on the electrochemical behaviour of the Fe/0.5 mol L(-1) H(2)SO(4) interface at 25 degrees C was studied using cronopotentiometry, anodic and cathodic polarization curves and electrochemical impedance spectroscopy. BTAH and TTAH are inhibitors of anodic iron dissolution and the subsequent hydrogen evolution in 0.5 mol L(-1) H(2)SO(4) medium. Mass transport is an important step in the anodic process of inhibitive film formation. Electrochemical impedance spectroscopy was used to investigate the iron dissolution mechanism in the presence of the inhibitors and showed that BTAH and TTAH are adsorbed on the iron surface, thereby changing its dissolution mechanism in sulfate media. Starting from an iron dissolution model, it was possible to suggest two different mechanisms for iron dissolution in 0.5 mol L(-1) H(2)SO(4) containing BTAH or TTAH that involve a complex Fe(II)-inhibitor. (C) 2009 Elsevier B.V. All rights reserved