965 resultados para Numismatics of Al-Andalus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friction stir lap welding (FSLW) of an age hardened Al alloy and evaluations of how FS speeds affected hooking and how hooking and softening due to FS affected fracture strength of the lap welds have been conducted. It was found that increasing rotation speed and reducing welding speed (v) increased the stir zone size (AB-SZ) and also hook size (h), although a maximum value of h (hMax) reached. The features of hooks for the observed - AB-SZ-h relationships are presented and explained. It was found that when h increased to a value of ~ 0.9 mm (for the 3 mm alloy sheets), it started to invoke a significant effect on reducing fracture strength. Factors such as FS softening and insufficient joining, limited the fracture strength of the lap welds for small h values and these are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unfavourable effect of hooking or softening, respectively, on fracture strength of joints made using friction stir lap welding (FSLW) is known but the combined effect on the magnitude of strength reduction is not clear. In this study, FSLW experiments using AA6060-T5 and AZ31B-H24 alloys were conducted. For both alloys, rotation speed has a dominant effect on increasing the hook size due to increasing the stir flow volume thus lifting more the original lapping surfaces. In AA6060 welds, FS softening has limited the strength, when hook size approaches zero. Meanwhile hook starts to reduce the strength significantly, when its size reaches a critical value. The maximum strength of AA6060 FSL welds reaches ~ 70% of the base metal UTS when hook size approaches zero. This is in contract to ~30% for AZ31B FSL welds. This can be explained by the local plastic deformation behaviour during lap tensile testing.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mg2Si1-xSnx thermoelectric compounds were synthesized through a solid-state reaction at 700 °C between chips of Mg2Sn-Mg eutectic alloy and silicon fine powders. The Al dopants were introduced by employing AZ31 magnesium alloy that contains aluminum. The as-synthesized Mg2Si1-xSnx powders were consolidated by spark plasma sintering at 650-700 °C. X-ray diffraction and scanning electron microscopy revealed that the Mg2Si1-xSnx bulk materials were comprised of Si-rich and Sn-rich phases. Due to the complex microstructures, the electrical conductivities of Mg2Si1-xSnx are lower than Mg2Si. As a result, the average power factor of Al0.05Mg2Si0.73Sn0.27 is about 1.5 × 10-3 W/mK2 from room temperature to 850 K, being less than 2.5 × 10-3 W/mK2 for Al0.05Mg2Si. However, the thermal conductivity of Mg2Si1-xSnx was reduced significantly as compared to Al0.05Mg2Si, which enabled the ZT of Al0.05Mg2Si0.73Sn0.27 to be superior to Al0.05Mg2Si. Lastly, the electric power generation from one leg of Al0.05Mg2Si and Al0.05Mg2Si0.73Sn0.27 were evaluated on a newly developed instrument, with the peak output power of 15-20 mW at 300 °C hot-side temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion resistance and mechanical properties of nanocrystalline aluminium (Al) and Al-20. wt.%Cr alloys, synthesized by high-energy ball milling followed by spark plasma sintering, were investigated. Both alloys exhibited an excellent combination of corrosion resistance and compressive yield strength, which was attributed to the nanocrystalline structure, extended solubility, uniformly distributed fine particles, and homogenous microstructure induced by high-energy ball milling. This work demonstrates the possibilities of developing ultra-high strength Al alloys with excellent corrosion resistance, exploiting conventionally insoluble elements or alloying additions via suitable processing routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes the development of a method for analysis of the shape of the stretch zone surface based on parallax measurement theory and using digital image processing techniques. Accurate criteria for the definition of the boundaries of the stretch zone are established from profiles of fracture surfaces obtained from crack tip opening displacement tests on Al-7050 alloy samples. The elevation profiles behavior analysis is based on stretch zone width and height parameters. It is concluded that the geometry of the stretch zone profiles under plane strain conditions can be described by a semi-parabolic relationship. (C) Elsevier B.V., 1999. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)