920 resultados para Numerical example
Resumo:
This letter presents a method to model propagation channels for estimation, in which the sampling scheme can be arbitrary. Additionally, the method yields accurate models, with a size that converges to the channel duration, measured in Nyquist periods. It can be viewed as an improvement on the usual discretization based on regular sampling at the Nyquist rate. The method is introduced in the context of multiple delay estimation using the MUSIC estimator, and is assessed through a numerical example.
Resumo:
The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.
Resumo:
A new passive shim design method is presented which is based on a magnetization mapping approach. Well defined regions with similar magnetization values define the optimal number of passive shims, their shape and position. The new design method is applied in a shimming process without prior-axial shim localization; this reduces the possibility of introducing new errors. The new shim design methodology reduces the number of iterations and the quantity of material required to shim a magnet. Only a few iterations (1-5) are required to shim a whole body horizontal bore magnet with a manufacturing error tolerance larger than 0.1 mm and smaller than 0.5 mm. One numerical example is presented
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Group decision making is the study of identifying and selecting alternatives based on the values and preferences of the decision maker. Making a decision implies that there are several alternative choices to be considered. This paper uses the concept of Data Envelopment Analysis to introduce a new mathematical method for selecting the best alternative in a group decision making environment. The introduced model is a multi-objective function which is converted into a multi-objective linear programming model from which the optimal solution is obtained. A numerical example shows how the new model can be applied to rank the alternatives or to choose a subset of the most promising alternatives.
Resumo:
Purpose – This paper sets out to study a production-planning problem for printed circuit board (PCB) assembly. A PCB assembly company may have a number of assembly lines for production of several product types in large volume. Design/methodology/approach – Pure integer linear programming models are formulated for assigning the product types to assembly lines, which is the line assignment problem, with the objective of minimizing the total production cost. In this approach, unrealistic assignment, which was suffered by previous researchers, is avoided by incorporating several constraints into the model. In this paper, a genetic algorithm is developed to solve the line assignment problem. Findings – The procedure of the genetic algorithm to the problem and a numerical example for illustrating the models are provided. It is also proved that the algorithm is effective and efficient in dealing with the problem. Originality/value – This paper studies the line assignment problem arising in a PCB manufacturing company in which the production volume is high.
Resumo:
The collect-and-place machine is one of the most widely used placement machines for assembling electronic components on the printed circuit boards (PCBs). Nevertheless, the number of researches concerning the optimisation of the machine performance is very few. This motivates us to study the component scheduling problem for this type of machine with the objective of minimising the total assembly time. The component scheduling problem is an integration of the component sequencing problem, that is, the sequencing of component placements; and the feeder arrangement problem, that is, the assignment of component types to feeders. To solve the component scheduling problem efficiently, a hybrid genetic algorithm is developed in this paper. A numerical example is used to compare the performance of the algorithm with different component grouping approaches and different population sizes.
Resumo:
The generalised transportation problem (GTP) is an extension of the linear Hitchcock transportation problem. However, it does not have the unimodularity property, which means the linear programming solution (like the simplex method) cannot guarantee to be integer. This is a major difference between the GTP and the Hitchcock transportation problem. Although some special algorithms, such as the generalised stepping-stone method, have been developed, but they are based on the linear programming model and the integer solution requirement of the GTP is relaxed. This paper proposes a genetic algorithm (GA) to solve the GTP and a numerical example is presented to show the algorithm and its efficiency.
Resumo:
In for-profit organizations efficiency measurement with reference to the potential for profit augmentation is particularly important as is its decomposition into technical, and allocative components. Different profit efficiency approaches can be found in the literature to measure and decompose overall profit efficiency. In this paper, we highlight some problems within existing approaches and propose a new measure of profit efficiency based on a geometric mean of input/output adjustments needed for maximizing profits. Overall profit efficiency is calculated through this efficiency measure and is decomposed into its technical and allocative components. Technical efficiency is calculated based on a non-oriented geometric distance function (GDF) that is able to incorporate all the sources of inefficiency, while allocative efficiency is retrieved residually. We also define a measure of profitability efficiency which complements profit efficiency in that it makes it possible to retrieve the scale efficiency of a unit as a component of its profitability efficiency. In addition, the measure of profitability efficiency allows for a dual profitability interpretation of the GDF measure of technical efficiency. The concepts introduced in the paper are illustrated using a numerical example.
Resumo:
The main advantage of Data Envelopment Analysis (DEA) is that it does not require any priori weights for inputs and outputs and allows individual DMUs to evaluate their efficiencies with the input and output weights that are only most favorable weights for calculating their efficiency. It can be argued that if DMUs are experiencing similar circumstances, then the pricing of inputs and outputs should apply uniformly across all DMUs. That is using of different weights for DMUs makes their efficiencies unable to be compared and not possible to rank them on the same basis. This is a significant drawback of DEA; however literature observed many solutions including the use of common set of weights (CSW). Besides, the conventional DEA methods require accurate measurement of both the inputs and outputs; however, crisp input and output data may not relevant be available in real world applications. This paper develops a new model for the calculation of CSW in fuzzy environments using fuzzy DEA. Further, a numerical example is used to show the validity and efficacy of the proposed model and to compare the results with previous models available in the literature.
Resumo:
This paper suggests a data envelopment analysis (DEA) model for selecting the most efficient alternative in advanced manufacturing technology in the presence of both cardinal and ordinal data. The paper explains the problem of using an iterative method for finding the most efficient alternative and proposes a new DEA model without the need of solving a series of LPs. A numerical example illustrates the model, and an application in technology selection with multi-inputs/multi-outputs shows the usefulness of the proposed approach. © 2012 Springer-Verlag London Limited.
Resumo:
The existing assignment problems for assigning n jobs to n individuals are limited to the considerations of cost or profit measured as crisp. However, in many real applications, costs are not deterministic numbers. This paper develops a procedure based on Data Envelopment Analysis method to solve the assignment problems with fuzzy costs or fuzzy profits for each possible assignment. It aims to obtain the points with maximum membership values for the fuzzy parameters while maximizing the profit or minimizing the assignment cost. In this method, a discrete approach is presented to rank the fuzzy numbers first. Then, corresponding to each fuzzy number, we introduce a crisp number using the efficiency concept. A numerical example is used to illustrate the usefulness of this new method. © 2012 Operational Research Society Ltd. All rights reserved.
Resumo:
In many real applications of Data Envelopment Analysis (DEA), the decision makers have to deteriorate some inputs and some outputs. This could be because of limitation of funds available. This paper proposes a new DEA-based approach to determine highest possible reduction in the concern input variables and lowest possible deterioration in the concern output variables without reducing the efficiency in any DMU. A numerical example is used to illustrate the problem. An application in banking sector with limitation of IT investment shows the usefulness of the proposed method. © 2010 Elsevier Ltd. All rights reserved.
Resumo:
Determining the Ordered Weighted Averaging (OWA) operator weights is important in decision making applications. Several approaches have been proposed in the literature to obtain the associated weights. This paper provides an alternative disparity model to identify the OWA operator weights. The proposed mathematical model extends the existing disparity approaches by minimizing the sum of the deviation between two distinct OWA weights. The proposed disparity model can be used for a preference ranking aggregation. A numerical example in preference ranking and an application in search engines prove the usefulness of the generated OWA weights.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.