901 resultados para Numerical Approximation
Resumo:
Analogue and finite element numerical models with frictional and viscous properties are used to model thrust wedge development. Comparison between model types yields valuable information about analogue model evolution, scaling laws and the relative strengths and limitations of the techniques. Both model types show a marked contrast in structural style between ‘frictional-viscous domains’ underlain by a thin viscous layer and purely ‘frictional domains’. Closely spaced thrusts form a narrow and highly asymmetric fold-and-thrust belt in the frictional domain, characterized by in-sequence propagation of forward thrusts. In contrast, the frictional-viscous domain shows a wide and low taper wedge and a thrust belt with a more symmetrical vergence, with both forward and back thrusts. The frictional-viscous domain numerical models show that the viscous layer initially simple shears as deformation propagates along it, while localized deformation resulting in the formation of a pop-up structure occurs in the overlying frictional layers. In both domains, thrust shear zones in the numerical model are generally steeper than the equivalent faults in the analogue model, because the finite element code uses a non-associated plasticity flow law. Nevertheless, the qualitative agreement between analogue and numerical models is encouraging. It shows that the continuum approximation used in numerical models can be used to model frictional materials, such as sand, provided caution is taken to properly scale the experiments, and some of the limitations are taken into account.
Resumo:
Translation of 2 articles from the Russian journal.
Resumo:
The prediction of watertable fluctuations in a coastal aquifer is important for coastal management. However, most previous approaches have based on the one-dimensional Boussinesq equation, neglecting variations in the coastline and beach slope. In this paper, a closed-form analytical solution for a two-dimensional unconfined coastal aquifer bounded by a rhythmic coastline is derived. In the new model, the effect of beach slope is also included, a feature that has not been considered in previous two-dimensional approximations. Three small parameters, the shallow water parameter (epsilon), the amplitude parameter (a) and coastline parameter (beta) are used in the perturbation approximation. The numerical results demonstrate the significant influence of both the coastline shape and beach slopes on tide-driven coastal groundwater fluctuations. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.
Resumo:
* This work has been supported by the Office of Naval Research Contract Nr. N0014-91-J1343, the Army Research Office Contract Nr. DAAD 19-02-1-0028, the National Science Foundation grants DMS-0221642 and DMS-0200665, the Deutsche Forschungsgemeinschaft grant SFB 401, the IHP Network “Breaking Complexity” funded by the European Commission and the Alexan- der von Humboldt Foundation.
Resumo:
AMS subject classification: 49N35,49N55,65Lxx.
Resumo:
ACM Computing Classification System (1998): G.1.2.
Resumo:
We introduce a modification of the familiar cut function by replacing the linear part in its definition by a polynomial of degree p + 1 obtaining thus a sigmoid function called generalized cut function of degree p + 1 (GCFP). We then study the uniform approximation of the (GCFP) by smooth sigmoid functions such as the logistic and the shifted logistic functions. The limiting case of the interval-valued Heaviside step function is also discussed which imposes the use of Hausdorff metric. Numerical examples are presented using CAS MATHEMATICA.
Resumo:
Multi-frequency Eddy Current (EC) inspection with a transmit-receive probe (two horizontally offset coils) is used to monitor the Pressure Tube (PT) to Calandria Tube (CT) gap of CANDU® fuel channels. Accurate gap measurements are crucial to ensure fitness of service; however, variations in probe liftoff, PT electrical resistivity, and PT wall thickness can generate systematic measurement errors. Validated mathematical models of the EC probe are very useful for data interpretation, and may improve the gap measurement under inspection conditions where these parameters vary. As a first step, exact solutions for the electromagnetic response of a transmit-receive coil pair situated above two parallel plates separated by an air gap were developed. This model was validated against experimental data with flat-plate samples. Finite element method models revealed that this geometrical approximation could not accurately match experimental data with real tubes, so analytical solutions for the probe in a double-walled pipe (the CANDU® fuel channel geometry) were generated using the Second-Order Vector Potential (SOVP) formalism. All electromagnetic coupling coefficients arising from the probe, and the layered conductors were determined and substituted into Kirchhoff’s circuit equations for the calculation of the pickup coil signal. The flat-plate model was used as a basis for an Inverse Algorithm (IA) to simultaneously extract the relevant experimental parameters from EC data. The IA was validated over a large range of second layer plate resistivities (1.7 to 174 µΩ∙cm), plate wall thickness (~1 to 4.9 mm), probe liftoff (~2 mm to 8 mm), and plate-to plate gap (~0 mm to 13 mm). The IA achieved a relative error of less than 6% for the extracted FP resistivity and an accuracy of ±0.1 mm for the LO measurement. The IA was able to achieve a plate gap measurement with an accuracy of less than ±0.7 mm error over a ~2.4 mm to 7.5 mm probe liftoff and ±0.3 mm at nominal liftoff (2.42±0.05 mm), providing confidence in the general validity of the algorithm. This demonstrates the potential of using an analytical model to extract variable parameters that may affect the gap measurement accuracy.
Resumo:
In this paper, we present a new numerical method to solve fractional differential equations. Given a fractional derivative of arbitrary real order, we present an approximation formula for the fractional operator that involves integer-order derivatives only. With this, we can rewrite FDEs in terms of a classical one and then apply any known technique. With some examples, we show the accuracy of the method.
Resumo:
In this talk, we propose an all regime Lagrange-Projection like numerical scheme for the gas dynamics equations. By all regime, we mean that the numerical scheme is able to compute accurate approximate solutions with an under-resolved discretization with respect to the Mach number M, i.e. such that the ratio between the Mach number M and the mesh size or the time step is small with respect to 1. The key idea is to decouple acoustic and transport phenomenon and then alter the numerical flux in the acoustic approximation to obtain a uniform truncation error in term of M. This modified scheme is conservative and endowed with good stability properties with respect to the positivity of the density and the internal energy. A discrete entropy inequality under a condition on the modification is obtained thanks to a reinterpretation of the modified scheme in the Harten Lax and van Leer formalism. A natural extension to multi-dimensional problems discretized over unstructured mesh is proposed. Then a simple and efficient semi implicit scheme is also proposed. The resulting scheme is stable under a CFL condition driven by the (slow) material waves and not by the (fast) acoustic waves and so verifies the all regime property. Numerical evidences are proposed and show the ability of the scheme to deal with tests where the flow regime may vary from low to high Mach values.
Resumo:
Mathematical skills that we acquire during formal education mostly entail exact numerical processing. Besides this specifically human faculty, an additional system exists to represent and manipulate quantities in an approximate manner. We share this innate approximate number system (ANS) with other nonhuman animals and are able to use it to process large numerosities long before we can master the formal algorithms taught in school. Dehaene´s (1992) Triple Code Model (TCM) states that also after the onset of formal education, approximate processing is carried out in this analogue magnitude code no matter if the original problem was presented nonsymbolically or symbolically. Despite the wide acceptance of the model, most research only uses nonsymbolic tasks to assess ANS acuity. Due to this silent assumption that genuine approximation can only be tested with nonsymbolic presentations, up to now important implications in research domains of high practical relevance remain unclear, and existing potential is not fully exploited. For instance, it has been found that nonsymbolic approximation can predict math achievement one year later (Gilmore, McCarthy, & Spelke, 2010), that it is robust against the detrimental influence of learners´ socioeconomic status (SES), and that it is suited to foster performance in exact arithmetic in the short-term (Hyde, Khanum, & Spelke, 2014). We provided evidence that symbolic approximation might be equally and in some cases even better suited to generate predictions and foster more formal math skills independently of SES. In two longitudinal studies, we realized exact and approximate arithmetic tasks in both a nonsymbolic and a symbolic format. With first graders, we demonstrated that performance in symbolic approximation at the beginning of term was the only measure consistently not varying according to children´s SES, and among both approximate tasks it was the better predictor for math achievement at the end of first grade. In part, the strong connection seems to come about from mediation through ordinal skills. In two further experiments, we tested the suitability of both approximation formats to induce an arithmetic principle in elementary school children. We found that symbolic approximation was equally effective in making children exploit the additive law of commutativity in a subsequent formal task as a direct instruction. Nonsymbolic approximation on the other hand had no beneficial effect. The positive influence of the symbolic approximate induction was strongest in children just starting school and decreased with age. However, even third graders still profited from the induction. The results show that also symbolic problems can be processed as genuine approximation, but that beyond that they have their own specific value with regard to didactic-educational concerns. Our findings furthermore demonstrate that the two often con-founded factors ꞌformatꞌ and ꞌdemanded accuracyꞌ cannot be disentangled easily in first graders numerical understanding, but that children´s SES also influences existing interrelations between the different abilities tested here.
Resumo:
Below cloud scavenging processes have been investigated considering a numerical simulation, local atmospheric conditions and particulate matter (PM) concentrations, at different sites in Germany. The below cloud scavenging model has been coupled with bulk particulate matter counter TSI (Trust Portacounter dataset, consisting of the variability prediction of the particulate air concentrations during chosen rain events. The TSI samples and meteorological parameters were obtained during three winter Campaigns: at Deuselbach, March 1994, consisting in three different events; Sylt, April 1994 and; Freiburg, March 1995. The results show a good agreement between modeled and observed air concentrations, emphasizing the quality of the conceptual model used in the below cloud scavenging numerical modeling. The results between modeled and observed data have also presented high square Pearson coefficient correlations over 0.7 and significant, except the Freiburg Campaign event. The differences between numerical simulations and observed dataset are explained by the wind direction changes and, perhaps, the absence of advection mass terms inside the modeling. These results validate previous works based on the same conceptual model.
Resumo:
Mixing layers are present in very different types of physical situations such as atmospheric flows, aerodynamics and combustion. It is, therefore, a well researched subject, but there are aspects that require further studies. Here the instability of two-and three-dimensional perturbations in the compressible mixing layer was investigated by numerical simulations. In the numerical code, the derivatives were discretized using high-order compact finite-difference schemes. A stretching in the normal direction was implemented with both the objective of reducing the sound waves generated by the shear region and improving the resolution near the center. The compact schemes were modified to work with non-uniform grids. Numerical tests started with an analysis of the growth rate in the linear regime to verify the code implementation. Tests were also performed in the non-linear regime and it was possible to reproduce the vortex roll-up and pairing, both in two-and three-dimensional situations. Amplification rate analysis was also performed for the secondary instability of this flow. It was found that, for essentially incompressible flow, maximum growth rates occurred for a spanwise wavelength of approximately 2/3 of the streamwise spacing of the vortices. The result demonstrated the applicability of the theory developed by Pierrehumbet and Widnall. Compressibility effects were then considered and the maximum growth rates obtained for relatively high Mach numbers (typically under 0.8) were also presented.