983 resultados para Nonsense verses.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.
Resumo:
A genome-wide siRNA screen against host factors that affect the infection of Semliki Forest virus (SFV), a positive-strand (+)RNA virus, revealed that components of the nonsense-mediated mRNA decay (NMD) pathway restrict early, post-entry steps of the infection cycle. In HeLa cells and primary human fibroblasts, knockdown of UPF1, SMG5 and SMG7 leads to increased levels of viral proteins and RNA and to higher titers of released virus. The inhibitory effect of NMD was stronger when the efficiency of virus replication was impaired by mutations or deletions in the replicase proteins. Accordingly, impairing NMD resulted in a more than 20-fold increased production of these attenuated viruses. Our data suggest that intrinsic features of genomic and sub-genomic viral mRNAs, most likely the extended 3'-UTR length, make them susceptible to NMD. The fact that SFV replication is entirely cytoplasmic strongly suggests that degradation of the viral RNA occurs through the exon junction complex (EJC)-independent mode of NMD. Collectively, our findings uncover a new biological function for NMD as an intrinsic barrier to the translation of early viral proteins and the amplification of (+)RNA viruses in animal cells. Thus, in addition to its role in mRNA surveillance and post-transcriptional gene regulation, NMD also contributes to protect cells from RNA viruses.
Resumo:
Nonsense-mediated mRNA decay (NMD) is best known for its role in quality control of mRNAs, where it recognizes premature translation termination codons (PTCs) and rapidly degrades the corresponding mRNA. The basic mechanism of NMD appears to be conserved among eukaryotes: aberrant translation termination triggers NMD. According to the current working model, correct termination requires the interaction of the ribosome with the poly(A)-binding protein (PABPC1) mediated through the eukaryotic release factors 1 (eRF1) and 3 (eRF3). The model predicts that in the absence of this interaction, the NMD core factor UPF1 binds to eRF3 instead and initiates the events ultimately leading to mRNA degradation. However, the exact mechanism of how the decision between proper and aberrant (i.e. NMD-inducing) translation termination occurs is not yet well understood. We address this question using a tethering approach in which proteins of interest are bound to a reporter transcript into the vicinity of a PTC. Subsequently, the ability of the tethered proteins to inhibit NMD and thus stabilize the reporter transcript is assessed. Our results revealed that the C-terminal domain interacting with eRF3 seems not to be necessary for tethered PABPC1 to suppress NMD. In contrast, the N-terminal part of PABPC1, consisting of 4 RNA recognition motifs (RRMs) and interacting with eukaryotic initiation factor 4G (eIF4G), retains the ability to inhibit NMD. We find that eIF4G is able to inhibit NMD in a similar manner as PABPC1 when tethered to the reporter mRNA. This stabilization by eIF4G depends on two key interactions. One of these interactions is to PABPC1, the other is to eukaryotic initiation factor 3 (eIF3). These results confirm the importance of PABPC1 in inhibiting NMD but additionally reveal a role of translation initiation factors in the distinction between bona fide termination codons and PTCs.
Resumo:
Eukaryotic mRNAs with premature translation-termination codons (PTCs) are recognized and eliminated by nonsense-mediated mRNA decay (NMD). NMD targeted mRNAs can be degraded by different routes that all involve phosphorylated UPF1 (P-UPF1) as a starting point. The endonuclease SMG6, which cleaves mRNA near the PTC, is one of three known NMD factors thought to be recruited to nonsense mRNAs by interaction with P-UPF1, leading to eventual mRNA degradation. By MS2-mediated tethering of SMG6 and mutants thereof to a reporter RNA combined with knockdowns of various NMD factors, we demonstrate that besides its endonucleolytic activity, SMG6 also requires UPF1 and SMG1 for inducing RNA decay. Our experiments revealed a phosphorylation-independent interaction between SMG6 and UPF1 that is important for SMG6-mediated mRNA decay and using yeast two hybrid assays, we mapped this interaction to the unique stalk region of the UPF1 helicase domain. This region of UPF1 is essential for SMG6-mediated reporter RNA decay and also for NMD. Our results postulate that besides recruiting SMG6 to its RNA substrates, UPF1 is also required to activate its endonuclease activity.
Resumo:
Despite over 30 years of research, the molecular mechanisms of nonsense-mediated mRNA decay (NMD) are still not well understood. NMD appears to exist in most eukaryotes and is intensively studied in S. cerevisiae, C. elegans, D. melanogaster and in mammalian cells. Current evidence suggests that the core of NMD – involving UPF1, UPF2 and UPF3 – is evolutionarily conserved, but that different species may have evolved slightly different ways to identify target mRNAs for NMD and to degrade them. Our lab has shown that the exon junction complex (EJC) is not absolutely required for NMD in human cells (Bühler et al., NSMB 2006) and that it is neither restricted to CBP80-bound mRNAs as classical models claim (Rufener & Mühlemann, NSMB 2013). Together with the finding that long 3’ UTRs often are an NMD-inducing feature (Eberle et al, PLoS Biol 2008; Yepiskoposyan et al., RNA 2011), our data is consistent with much of the data from other species and hence has led to a “unified” working model for NMD (Stalder & Mühlemann, Trends Cell Biol 2008; Schweingruber et al., Biochim Biophys Acta 2013). Our recent iCLIP experiments with endogenous UPF1 indicate that UPF1 binds mRNAs indiscriminately with respect to being an NMD target or not before they engage with ribosomes (Zünd et al., NSMB 2013). After onset of translation, UPF1 is cleared from the coding region but remains bound to the 3’ UTR of mRNAs. Why this 3’ UTR-associated in some cases induces NMD and in others not is currently being investigated and not yet understood. Following assembly of a phospho-UPF1-containing NMD complex, decay adaptors (SMG5, SMG7, PNRC2) and/or the endonuclease SMG6 are recruited. While the latter cleaves the mRNA in the vicinity of the termination codon, the former proteins induce deadenylation, decapping and exonucleolytic degradation of the mRNA. In my talk, I will give an overview about the latest developments in NMD – with a focus on our own work – and try to integrate the bits and pieces into a somewhat coherent working model.
Resumo:
composed by A. Kaiser
Resumo:
Albino phenotypes are documented in various species including the American mink. In other species the albino phenotypes are associated with tyrosinase (TYR) gene mutations; therefore TYR was considered the candidate gene for albinism in mink. Four microsatellite markers were chosen in the predicted region of the TYR gene. Genotypes at the markers Mvi6025 and Mvi6034 were found to be associated with the albino phenotype within an extended half-sib family. A BAC clone containing Mvi6034 was mapped to chromosome 7q1.1-q1.3 by fluorescent in situ hybridization. Subsequent analysis of genomic TYR sequences from wild-type and albino mink samples identified a nonsense mutation in exon 1, which converts a TGT codon encoding cysteine to a TGA stop codon (c.138T>A, p.C46X; EU627590). The mutation truncates more than 90% of the normal gene product including the putative catalytic domains. The results indicate that the nonsense mutation is responsible for the albino phenotype in the American mink.
Resumo:
A novel canine muscular dystrophy in Landseer dogs was observed. We had access to five affected dogs from two litters. The clinical signs started at a few weeks of age and the severe progressive muscle weakness led to euthanasia between 5 and 15 months of age. The pedigrees of the affected dogs suggested a monogenic autosomal recessive inheritance of the trait. Linkage and homozygosity mapping indicated two potential genome segments for the causative variant on chromosomes 10 and 31 harboring a total of 4.8 Mb of DNA or 0.2% of the canine genome. Using the illumina sequencing technology we obtained a whole genome sequence from one affected Landseer. Variants were called with respect to the dog reference genome and compared to the genetic variants of 170 control dogs from other breeds. The affected Landseer dog was homozygous for a single private non-synonymous variant in the critical intervals, a nonsense variant in the COL6A1 gene (Chr31:39,303,964G>T; COL6A1:c.289G>T; p.E97*). Genotypes at this variant showed perfect concordance with the muscular dystrophy phenotype in all five cases and more than one thousand control dogs. Variants in the human COL6A1 gene cause Bethlem myopathy or Ullrich congenital muscular dystrophy. We therefore conclude that the identified canine COL6A1 variant is most likely causative for the observed muscular dystrophy in Landseer dogs. Based on the nature of the genetic variant in Landseer dogs and their severe clinical phenotype these dogs represent a model for human Ullrich congenital muscular dystrophy.
Resumo:
Heinrich Graetz
Resumo:
Nonsense-mediated decay (NMD) degrades aberrant transcripts containing premature termination codons (PTCs). The T-cell receptor (TCR) locus undergoes error-prone rearrangements that frequently acquire PTCs. Transcripts harboring PTCs from this locus are downregulated much more than transcripts from non-rearranging genes. Efficient splicing is essential for this robust downregulation. ^ Here I show that TCR NMD is unique in another respect: it is not impaired by RNAi-mediated depletion of the NMD factor UPF3b. This differentiates TCR transcripts from classical NMD (assayed using β-globin or triose phosphate isomerase transcripts), which does depend on UPF3b. Depletion of UPF3a, which encodes a gene related to UPF3b, also had no effect on TCR NMD. Mapping experiments identified TCR sequences that when deleted or mutated caused a switch to UPF3b dependence. Since UPF3b dependence was invariably accompanied by less efficient RNA splicing, this suggests that UPF3b-dependent NMD occurs when transcripts are generated by inefficient splicing. Microarray analysis revealed the existence of many NMD-targeted mRNAs from wild-type genes whose downregulation is impervious to UPF3b depletion. This suggests the existence of an alternative NMD pathway independent of UPF3b that is widely used to downregulate the level of both normal and mutant transcripts. ^ During the course of my studies, I also found that the function of UPF3a is fundamentally distinct from that of UPF3b in several aspects. First, classical NMD failed to be impaired by UPF3a depletion, whereas it was reversed by UPF3b depletion. Second, UPF3a depletion had no effect on NMD elicited by tethered UPF2, whereas UPF3b depletion blocked this response. Thus, UPF3a does not function in classical NMD. Third, UPF3b depletion upregulated the expression of UPF3a, whereas UPF3a depletion had no effect on UPF3b expression. This suggests that a UPF3b-mediated feedback network exists that regulates the UPF3a expression. Lastly, UPF3a depletion but not UPF3b depletion significantly upregulated TCR precursor RNAs. This suggests that UPF3a, not UPF3b, functions in the surveillance of precursor RNAs, which typically contain many PTCs in the introns. Collectively, my data suggests that UPF3a and UPF3b are not functionally redundant, as previously thought, but instead have separable functions. ^
Resumo:
Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^
Resumo:
Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades aberrant mRNAs harboring premature termination codons (PTCs). Two out of three T-cell receptor β (TCRβ) transcripts carry PTCs as a result of error-prone programmed rearrangements that occur at this locus during lymphocyte maturation. PTCs decrease TCRβ mRNA levels to a much greater extent than mRNAs transcribed from non-rearranging genes. This robust decrease in TCRβ mRNA levels is not a unique characteristic of the T-cell environment or the TCRβ promoter. The simplest explanation for this is that PTC-bearing TCRβ mRNAs elicit a stronger NMD response. An alternative explanation is NMD collaborates with another mechanism to dramatically decrease PTC-bearing TCRβ mRNA levels. ^ In my dissertation, I investigated the molecular mechanism behind the strong decrease in TCRβ mRNA levels triggered by PTCs. To determine the location of this response, I performed mRNA half-life analysis and found that PTCs elicited more rapid TCRβ mRNA decay in the nuclear fraction, not the cytoplasmic fraction. Although decay was restricted to the nuclear fraction, PTC-bearing TCRβ transcript levels were extremely low in the cytoplasm, a phenomenon that I named the nonsense-codon induced partitioning shift (NIPS). I established that NIPS shares several qualities with NMD, including its dependence on translation and NMD factors. Several lines of evidence suggested that NIPS results from PTCs eliciting retention of TCRβ transcripts in the nuclear fraction. This retention, as well as rapid TCRβ mRNA decay, most likely occurs in either the nucleoplasm or the outer nuclear membrane, based on analysis of nuclear and cytoplasmic markers in the highly purified nuclei I used for my studies. To further address the location of decay, I asked whether nuclear or cytoplasmic RNA decay factors mediated the destruction of PTC-bearing mRNAs. My results suggested that a nuclear component of the 3'-to-5' exosome, as well as an endonucleolytic activity, are involved in the destruction of PTC-containing TCRβ mRNAs. Individual endogenous NMD substrates had differential requirements for nuclear and cytoplasmic exonucleases. In summary, my results provide evidence that PTCs trigger multiple mechanisms involving multiple decay factors to remove and regulate mRNAs in mammalian cells. ^
Resumo:
El lugar común que identifica a la literatura de Silvina Ocampo como fantástica resulta un pretexto tranquilizador que de algún modo domestica su rareza. En las interpretaciones críticas actuales sigue funcionando esta idea reductora que, si para una coyuntura determinada resultaba explicativa, hoy se revela improcedente. Entiendo que, en sus momentos más característicos, los relatos de Ocampo se definen menos por los tópicos y procedimientos que involucran lo sobrenatural, lo anormal o lo irreal, que por una forma de la escritura cuyo desatino deja atónito al lector. Para leer esta literatura en nuevos términos, pienso en el nonsense como relato de la insensatez, un modo de uso de la locura como estética y como ética.
Resumo:
El lugar común que identifica a la literatura de Silvina Ocampo como fantástica resulta un pretexto tranquilizador que de algún modo domestica su rareza. En las interpretaciones críticas actuales sigue funcionando esta idea reductora que, si para una coyuntura determinada resultaba explicativa, hoy se revela improcedente. Entiendo que, en sus momentos más característicos, los relatos de Ocampo se definen menos por los tópicos y procedimientos que involucran lo sobrenatural, lo anormal o lo irreal, que por una forma de la escritura cuyo desatino deja atónito al lector. Para leer esta literatura en nuevos términos, pienso en el nonsense como relato de la insensatez, un modo de uso de la locura como estética y como ética.