943 resultados para Nonlinear vibration isolation system


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In previous publications, the concepts of dressed coordinates and dressed states have been introduced in the context of a harmonic oscillator linearly coupled to an infinity set of other harmonic oscillators. In this paper, we show how to generalize such dressed coordinates and. states to a nonlinear version of the mentioned system. Also, we clarify some misunderstandings about the concept of dressed coordinates. Indeed, now we: prefer to call them renormalized coordinates to emphasize the analogy with the renormalized fields in quantum field theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper energy transfer in a dissipative mechanical system is analysed. Such system is composed of a linear and a nonlinear oscillator with a nonlinearizable cubic stiffness. Depending on initial conditions, we find energy transfer either from linear to nonlinear oscillator (energy pumping) or from nonlinear to linear. Such results are valid for two different potentials. However, under resonance and absence of external excitation, if the mass of the nonlinear oscillator is adequately small then the linear oscillator always loses energy. Our approach uses rigorous Regular Perturbation Theory. Besides, we have included the case of two linear oscillators under linear or cubic interactions. Comparisons with the earlier case are made. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The evolution equation governing surface perturbations of a shallow fluid heated from below at the critical Rayleigh number for the onset of convective motion, and with boundary conditions leading to zero critical wave number, is obtained. A solution for negative or cooling perturbations is explicitly exhibited, which shows that the system presents sharp propagating fronts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We examine the appearance of surface waves governed by Burgers and Korteweg-de Vries equations in a shallow viscous heated fluid. We consider waves triggered by a surface-tension variation induced by both temperature and concentration gradients. We also establish the range of parameters for which the above-mentioned equations appear.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes a nonlinear phenomenon in the dynamical behavior of a nonlinear system under two non-ideal excitations: the self-synchronization of unbalanced direct current motors. The considered model is taken as a Duffing system that is excited by two unbalanced direct current motors with limited power supplies. The results obtained by using numerical simulations are discussed in details.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.