892 resultados para Nonlinear Optics
Resumo:
(Na1-xKx)(0.5)Bi0.5TiO3 (NKBT) (x = 0.1, 0.2, and 0.3) thin films with good surface morphology and rhombohedral perovskite structure were fabricated on quartz substrates by a sol-gel process. The fundamental optical constants (the band gaps, linear refractive indices and absorption coefficients) of the films were obtained through optical transmittance measurements. The nonlinear optical properties were investigated by Z-scan technique performed at 532 nm with a picosecond laser. A two-photon absorption effect closely related with potassium-doping content was found in thin films, and the nonlinear refractive index n(2) increases evidently with potassium-doping. The real part of the third-order nonlinear susceptibility chi((3)) is much larger than its imaginary part, indicating that the third-order optical nonlinear response of the NKBT films is dominated by the optical nonlinear refractive behavior. These results show that NKBT thin films have potential applications in nonlinear optics. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper shows that waveguides induced by grey screening-photovoltaic solitons are always single mode for all intensity ratios, which are the ratio between the peak intensity of the soliton and the dark irradiance. It finds that the confined energy near the centre of the grey soliton and the propagation constant of the guided mode increase monotonically with increasing intensity ratio. On the other hand, when the soliton greyness increases, the confined energy near the centre of the grey soliton and the propagation constant of the guided mode reduce monotonically. When the bulk photovoltaic effect is neglected for short circuits, these waveguides become waveguides induced by grey screening solitons. When the external bias field is absent, these waveguides become waveguides induced by grey photovoltaic solitons.
Resumo:
The nonlinear optical absorption in a three-subband step asymmetric semiconductor quantum well driven by a strong terahertz (THz) field is investigated theoretically by employing the intersubband semiconductor-Bloch equations. We show that the optical absorption spectrum strongly depends on the intensity, frequency, and phase of the pump THz wave. The strong THz field induces THz sidebands and Autler-Townes splitting in the probe absorption spectrum. Varying the pump frequency can bring not only the new absorption peaks but also the changing of the energy separation of the two higher-energy levels. The dependence of the absorption spectrum on the phase of the pump THz wave is also very remarkable.
Resumo:
Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We report the generation of 207-fs pulses with 1.2mW average power at 1036 nm directly from a passively mode-locked Yb-doped fibre laser with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. These results imply a 4-fold reduction in pulse duration over previously reported figure-of-eight cavity passively mode-locked Yb-doped fibre lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0MHz. On the other hand, this laser offers a cleaner spectrum and greater stability and is completely self-starting.
Resumo:
银纳米晶体掺杂的高非线性石英光纤的全光转换应用
Resumo:
低损耗实芯碲酸盐光纤的非线性研究
Resumo:
对BBO晶体三次谐波转换过程中相位失配情况进行了研究。当BBO 晶体按Ⅰ类相位匹配(oo→e)进行三次谐波转换时,如果保持基频光正入射,当倍频光从两个相互独立的平面方向(晶体主截面及主截面的垂面)偏离预期方向时,相位失配将出现变化,并且在两个面内的偏离量对转换效率的影响程度不同。我们分别数值模拟了两个方向上的相位失配情况,并给出了谐波转换效率同入射角度偏差的关系。数值模拟结果表明,在主截面内的相位匹配容限角为0.2°,在主截面垂面内的相位匹配容限角为4.5°。同时,开展了实验研究,实验结果与数值模拟结果高度吻合,表明在主截面内的角度偏差对转换效率的影响更大。
Resumo:
A series of new PPV oligomers containing 8-substituted quinoline, 2,2'-(arylenedivinylene) bis-8-quinoline derivatives, were designed and synthesized via a Knoevenagel condensation reaction of quinaldine, 8-hydroxy-or 8-methoxy-quinaldine with aromatic dialdehydes. These PPV oligomers were characterized by H-1 and C-13-NMR, X-ray diffraction, elemental analysis, UV-visible and fluorescence spectroscopies. The X-ray diffraction investigation showed that there are intermolecular pi...pi interactions in the solid state in 1 and 3. The optical and photoluminescent properties study demonstrated that the emission color of the resulting materials varies from blue to yellow and is dependent on the substituents (pi-donor and pi-acceptor groups) on both sides of the conjugated molecules and the aromatic core in the middle of the conjugated backbones. The electroluminescent devices using compounds 1-4 as the emitters and electron-transporting layers were fabricated with the structure ITO/NPB/emitter/LiF/Al. The best device performance with the maximum brightness of 5530 cd m(-2) and the luminous efficiency of 2.4 cd A(-1) is achieved by using compound 4, with intramolecular charge transfer character, as the emitter; these values represent a more than 5-fold improvement in brightness and efficiency compared to compound 3 without methoxy groups on the phenyl rings.
Resumo:
Two new poly(phenylenevinylene) (PPV) oligomers, 2,2'-(1,4-phenylenedivinylene)bis-8-acetoxy quinolines were synthesized via a Knoevenagel condensation reaction. The single-crystal X-ray diffraction study shows that there are intermolecular pi...pi interactions in the solid state of 2,2'(1,4-phenylenedivinylene)bis-8-acetoxyquinoline. Electroluminescent properties using these compounds as emitters have been investigated.
Resumo:
We describe a 42.6 Gbit/s all-optical pattern recognition system which uses semiconductor optical amplifiers (SOAs). A circuit with three SOA-based logic gates is used to identify the presence of specific port numbers in an optical packet header.
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy has developed rapidly and is opening the door to new types of experiments. This work describes the development of new laser sources for CARS microscopy and their use for different applications. It is specifically focused on multimodal nonlinear optical microscopy—the simultaneous combination of different imaging techniques. This allows us to address a diverse range of applications, such as the study of biomaterials, fluid inclusions, atherosclerosis, hepatitis C infection in cells, and ice formation in cells. For these applications new laser sources are developed that allow for practical multimodal imaging. For example, it is shown that using a single Ti:sapphire oscillator with a photonic crystal fiber, it is possible to develop a versatile multimodal imaging system using optimally chirped laser pulses. This system can perform simultaneous two photon excited fluorescence, second harmonic generation, and CARS microscopy. The versatility of the system is further demonstrated by showing that it is possible to probe different Raman modes using CARS microscopy simply by changing a time delay between the excitation beams. Using optimally chirped pulses also enables further simplification of the laser system required by using a single fiber laser combined with nonlinear optical fibers to perform effective multimodal imaging. While these sources are useful for practical multimodal imaging, it is believed that for further improvements in CARS microscopy sensitivity, new excitation schemes are necessary. This has led to the design of a new, high power, extended cavity oscillator that should be capable of implementing new excitation schemes for CARS microscopy as well as other techniques. Our interest in multimodal imaging has led us to other areas of research as well. For example, a fiber-coupling scheme for signal collection in the forward direction is demonstrated that allows for fluorescence lifetime imaging without significant temporal distortion. Also highlighted is an imaging artifact that is unique to CARS microscopy that can alter image interpretation, especially when using multimodal imaging. By combining expertise in nonlinear optics, laser development, fiber optics, and microscopy, we have developed systems and techniques that will be of benefit for multimodal CARS microscopy.
Resumo:
Nonlinear optics is an essential component of modern laser systems and optoelectronic devices. It has also emerged as an important tool in probing the electronic, vibrational, magnetic, and crystallographic structure of materials ranging from oxides and metals, to polymers and biological samples. This review focuses on the specific technique of optical second harmonic generation (SHG), and its application in probing ferroelectric complex oxide crystals and thin films. As the dominant SHG interaction mechanism exists only in materials that lack inversion symmetry, SHG is a sensitive probe of broken inversion symmetry, and thus also of bulk polar phenomena in materials. By performing in-situ SHG polarimetry experiments in different experimental conditions such as sample orientation, applied electric field, and temperature, one can probe ferroelectric hysteresis loops and phase transitions. Careful modeling of the polarimetry data allows for the determination of the point group symmetry of the crystal. In epitaxial thin films with a two-dimensional arrangement of well-defined domain orientations, one can extract information about intrinsic material properties such as nonlinear coefficients, as well as microstructural information such as the local statistics of the different domain variants being probed. This review presents several detailed examples of ferroelectric systems where such measurements and modeling are performed. The use of SHG microscopic imaging is discussed, and its ability to reveal domain structures and phases not normally visible with linear optics is illustrated.
Resumo:
The second harmonic generation (SHG) intensity spectrum of SiC, ZnO, GaN two-dimensional hexagonal crystals is calculated by using a real-time first-principles approach based on Green's function theory [Attaccalite et al., Phys. Rev. B: Condens. Matter Mater. Phys. 2013 88, 235113]. This approach allows one to go beyond the independent particle description used in standard first-principles nonlinear optics calculations by including quasiparticle corrections (by means of the GW approximation), crystal local field effects and excitonic effects. Our results show that the SHG spectra obtained using the latter approach differ significantly from their independent particle counterparts. In particular they show strong excitonic resonances at which the SHG intensity is about two times stronger than within the independent particle approximation. All the systems studied (whose stabilities have been predicted theoretically) are transparent and at the same time exhibit a remarkable SHG intensity in the range of frequencies at which Ti:sapphire and Nd:YAG lasers operate; thus they can be of interest for nanoscale nonlinear frequency conversion devices. Specifically the SHG intensity at 800 nm (1.55 eV) ranges from about 40-80 pm V(-1) in ZnO and GaN to 0.6 nm V(-1) in SiC. The latter value in particular is 1 order of magnitude larger than values in standard nonlinear crystals.
Resumo:
Light-scattering experiments gained prominence as potential applications of quantum optics, nonlinear optics, and photon localization. The possibility of the realization of lasing action in random media has created much interest in the study of the coherent structure of the backscattered light from disordered media. Backscattering (BS) studies are carried out to analyze the possibilities of photon localization in colloidal silica. The scattering enhancement is best associated with the density of the scatterers. The width of the BS cone and, hence, the mean-free path is related to the concentration of the medium. The dependence of the photon wavelength on the possible characteristics of the scattering is presented.