946 resultados para Non-destructive method
Resumo:
The X-ray test is a precise, fast and non-destructive method to detect mechanical damage in seeds. In the present study, the efficiency of X-ray analysis in identifying the extent of mechanical damage in sweet corn seeds and its relationship with germination and vigor was evaluated. Hybrid 'SWB 551' (sh2) seeds with round (R) and flat (F) shapes were classified as large (L), medium (M1, M2 and M3) and small (S), using sieves with round and oblong screens. After artificial exposure to different levels of damage (0, 1, 3, 5 and 7 impacts), seeds were X-rayed (15 kV, 5 min) and submitted to germination (25 °C/5 days) and cold (10 °C/7 days) tests. Digital images of normal and abnormal seedlings and ungerminated seeds from germination and cold tests were jointly analyzed with the seed X-ray images. Results showed that damage affecting the embryonic axis resulted in abnormal seedlings or dead seeds in the germination and cold tests. The X-ray analysis is efficient for identifying mechanical damage in sweet corn seeds, allowing damage severity to be associated with losses in germination and vigor.
Resumo:
In the last 20-30 years, the implementation of new technologies from the research centres to the food industry process was very fast. The infrared thermography is a tool used in many fields, including agriculture and food science technology, because of it's important qualities like non-destructive method, it is fast, it is accurate, it is repeatable and economical. Almost all the industrial food processors have to use the thermal process to obtain an optimal product respecting the quality and safety standards. The control of temperature of food products during the production, transportation, storage and sales is an essential process in the food industry network. This tool can minimize the human error during the control of heat operation, and reduce the costs with personal. In this thesis the application of infrared thermography (IRT) was studies for different products that need a thermal process during the food processing. The background of thermography was presented, and also some of its applications in food industry, with the benefits and limits of applicability. The measurement of the temperature of the egg shell during the heat treatment in natural convection and with hot-air treatment was compared with the calculated temperatures obtained by a simplified finite element model made in the past. The complete process shown a good results between calculated and observed temperatures and we can say that this technique can be useful to control the heat treatments for decontamination of egg using the infrared thermography. Other important application of IRT was to determine the evolution of emissivity of potato raw during the freezing process and the control non-destructive control of this process. We can conclude that the IRT can represent a real option for the control of thermal process from the food industry, but more researches on various products are necessary.
Resumo:
In this work we study a model for the breast image reconstruction in Digital Tomosynthesis, that is a non-invasive and non-destructive method for the three-dimensional visualization of the inner structures of an object, in which the data acquisition includes measuring a limited number of low-dose two-dimensional projections of an object by moving a detector and an X-ray tube around the object within a limited angular range. The problem of reconstructing 3D images from the projections provided in the Digital Tomosynthesis is an ill-posed inverse problem, that leads to a minimization problem with an object function that contains a data fitting term and a regularization term. The contribution of this thesis is to use the techniques of the compressed sensing, in particular replacing the standard least squares problem of data fitting with the problem of minimizing the 1-norm of the residuals, and using as regularization term the Total Variation (TV). We tested two different algorithms: a new alternating minimization algorithm (ADM), and a version of the more standard scaled projected gradient algorithm (SGP) that involves the 1-norm. We perform some experiments and analyse the performance of the two methods comparing relative errors, iterations number, times and the qualities of the reconstructed images. In conclusion we noticed that the use of the 1-norm and the Total Variation are valid tools in the formulation of the minimization problem for the image reconstruction resulting from Digital Tomosynthesis and the new algorithm ADM has reached a relative error comparable to a version of the classic algorithm SGP and proved best in speed and in the early appearance of the structures representing the masses.
Resumo:
The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.
Resumo:
This work is a preliminary studio of the possibility of assess a relationship between solar radiation and watercore development on apple fruit, during maturation, using a non destructive method such as Magnetic Resonance Imaging (MRI). For such purpose, several low cost solar radiation sensors were designed for the trial and placed at 2 different heights (1.5 and 2.5 m) on 6 adult ?Esperiega? apple trees, in a commercial orchard in Ademuz (Valencia). Sensors were connected along 27 days, during the end of the growth period and start of the fruit maturation process, and radiation measurements of the a-Si sensors were recorded every 1 minute. At the end of this period, fruits from the upper and the lower part of the canopy of each tree were harvested. In all, 152 apples were collected and images with MRI. A Principal Component Analysis, perfomed over the histograms of the images, as well as segmentation methods were performed on the MR images in order to find a pattern involving solar radiation and watercore incidence.
Resumo:
A atividade humana tem contribuído com as emissões de gases de efeito estufa (GEE) associadas, principalmente, com queima de combustíveis fósseis e mudanças no uso da terra. Assim, se faz necessário que sejam adotadas medidas visando o retardamento dos efeitos das mudanças climáticas. As florestas exercem papel essencial no balanço de carbono principalmente por funcionarem como sumidouros de CO2. Por outro lado, se desmatadas, promovem emissões e liberam parte do carbono estocado. A quantidade de biomassa florestal e o teor de carbono podem variar em função do tipo florestal, bem como de sua localização. Entretanto, fator importante diz respeito à confiabilidade dos dados mensurados neste tipo de pesquisa. A biomassa e o carbono da parte aérea podem ser determinados via método destrutivo, ou estimados via método não destrutivo. A construção do Rodoanel Mário Covas trecho norte e a supressão de uma área de Mata Atlântica possibilitou a realização de estudo de biomassa da parte aérea via método destrutivo. O objetivo deste trabalho foi estudar o tamanho e forma de parcelas, a intensidade amostral, quantificar a biomassa e o carbono na parte aérea, comparar métodos destrutivos e não destrutivos para a quantificação de biomassa e carbono na parte aérea, estudar a variação da densidade básica da madeira das espécies nas diferentes classes de DAP e grupos sucessionais e comparar as medidas de altura total e DAP obtidas a campo no inventário com as medidas coletadas após o corte. O tamanho mais conveniente de parcela foi 400 m 2, com forma retangular e dimensão de 10 x 40 m. A intensidade amostral variou entre 39 e 75 unidades amostrais. A biomassa da parte aérea obtida, via método destrutivo, foi de 188,3 Mg ha-1 e o carbono, 85,1 Mg ha-1. A biomassa estimada por equações alométricas da literatura foi subestimada, quando comparada ao valor real, obtido via método destrutivo. As menores classes de DAP apresentaram as maiores densidades básicas da madeira. A densidade básica foi 0,488 g cm-3 na média das espécies. A porcentagem de carbono contida nos troncos e galhos não diferiu entre as classes de DAP. O teor de carbono foi 45,41%, na média dos troncos e galhos. Espécies pioneiras acumularam maior quantidade de biomassa e carbono nos galhos e apresentaram maior densidade básica que as não pioneiras. A utilização dos dados coletados na fase de inventário e após o corte não afetaram os valores de biomassa estimados.
Resumo:
El uso específico de la termografía infrarroja como técnica no destructiva permite el estudio de sistemas constructivos en edificios históricos (caracterización de materiales, disposición constructiva o identificación de elementos originales). Así, se muestra una aplicación práctica en templos en la provincia de Alicante construidos entre finales del siglo XVII y principios del xix, donde se analiza la complementariedad de las imágenes termográficas de 140 cúpulas (junto con datos recopilados in situ, dibujos originales y levantamiento de planos) como herramienta de estudio en fases de análisis previas a una restauración. En conclusión, la investigación detalla una aplicación termográfica al estudio de distintos aspectos como el reconocimiento de materiales empleados (90,71 % ladrillo macizo, 6,43 % ladrillo hueco y 2,86 % piedra), variaciones de espesor interior y exterior (75,71 % perfil apuntado, 17,86 % perfil semiesférico y 6,43 % perfil rebajado), caracterización de grietas/fisuras (estado de conservación) e identificación de cúpulas originales (96,43 %) o restauradas (3,57 %).
Resumo:
The present study gives a contribution to the knowledge on the Na-feldspar and plagioclases, extending the database of the Raman spectra of plagioclases with different chemical compositions and structural orders. This information may be used for the future planetary explorations by “rovers”, for the investigation of ceramics nanocrystal materials and for the mineralogical phase identification in sediments. Na-feldspar and plagioclase solid solution have been investigated by Raman spectroscopy in order to determine the relationships between the vibrational changes and the plagioclase crystal chemistry and structure. We focused on the Raman micro-spectroscopy technique, being a non-destructive method, suited for contactless analysis with high spatial resolution. Chemical and structural analyses have been performed on natural samples to test the usefulness of Raman spectroscopy as a tool in the study of the pressure-induced structural deformations, the disordering processes due to change in the Al-Si distribution in the tetrahedral sites and, finally, in the determination of the anorthitic content (Anx) in plagioclase minerals. All the predicted 39 Ag Raman active modes have been identified and assigned to specific patterns of atomic vibrational motion. A detailed comparison between experimental and computed Raman spectra has been performed and previous assignments have been revised, solving some discrepancies reported in recent literature. The ab initio calculation at the hybrid HF/DFT level with the WC1LYP Hamiltonian has proven to give excellent agreement between calculated and experimentally measured Raman wavenumbers and intensities in triclinic minerals. A short digression on the 36 infrared active modes of Na-feldspar has been done too. The identification of all 39 computed Raman modes in the experimentally measured spectra of the fully ordered Na-feldspar, known as low albite, along with the detailed description of each vibrational mode, has been essential to extend the comparative analysis to the high pressure and high temperature structural forms of albite, which reflect the physical–chemical conditions of the hosting rocks. The understanding of feldspar structure response to pressure and temperature is crucial in order to constrain crustal behaviour. The compressional behaviour of the Na-feldspar has been investigated for the first time by Raman spectroscopy. The absence of phase transitions and the occurrence of two secondary compression mechanisms acting at different pressures have been confirmed. Moreover, Raman data suggest that the internal structural changes are confined to a small pressure interval, localized around 6 GPa, not spread out from 4 to 8 GPa as suggested by previous X-rays studies on elasticity. The dominant compression mechanisms act via tetrahedral tilting, while the T-O bond lengths remain nearly constant at moderate compressional regimes. At the spectroscopic level, this leads to the strong pressure dependencies of T-O-T bending modes, as found for the four modes at 478, 508, 578 and 815 cm-1. The Al-Si distribution in the tetrahedral sites affects also the Raman spectrum of Na-feldspar. In particular, peak broadening is more sensitive than peak position to changes in the degree of order. Raman spectroscopy is found to be a good probe for local ordering, in particular being sensitive to the first annealing steps, when the macroscopic order parameter is still high. Even though Raman data are scattered and there are outliers in the estimated values of the degree of order, the average peak linewidths of the Na-feldspar characteristic doublet band, labelled here as υa and υb, as a function of the order parameter Qod show interesting trends: both peak linewidths linearly increase until saturation. From Qod values lower than 0.6, peak broadening is no more affected by the Al-Si distribution. Moreover, the disordering process is found to be heterogeneous. SC-XRD and Raman data have suggested an inter-crystalline inhomogeneity of the samples, i.e., the presence of regions with different defect density on the micrometric scale. Finally, the influence of Ca-Na substitution in the plagioclase Raman spectra has been investigated. Raman spectra have been collected on a series of well characterized natural, low structural plagioclases. The variations of the Raman modes as a function of the chemical composition and the structural order have been determined. The number of the observed Raman bands at each composition gives information about the unit-cell symmetry: moving away from the C1 structures, the number of the Raman bands enhances, as the number of formula units in the unit cell increases. The modification from an “albite-like” Raman spectrum to a more “anorthite-like” spectrum occurs from sample An78 onwards, which coincides with the appearance of c reflections in the diffraction patterns of the samples. The evolution of the Raman bands υa and υb displays two changes in slope at ~An45 and ~An75: the first one occurs between e2 and e1 plagioclases, the latter separates e1 and I1 plagioclases with only b reflections in their diffraction patterns from I1 and P1 samples having b and c reflections too. The first variation represents exactly the e2→e1 phase transitions, whereas the second one corresponds in good approximation to the C1→I1 transition, which has been determined at ~An70 by previous works. The I1→P1 phase transition in the anorthite-rich side of the solid solution is not highlighted in the collected Raman spectra. Variations in peak broadening provide insights into the behaviour of the order parameter on a local scale, suggesting an increase in the structural disorder within the solid solution, as the structures have to incorporate more Al atoms to balance the change from monovalent to divalent cations. All the information acquired on these natural plagioclases has been used to produce a protocol able to give a preliminary estimation of the chemical composition of an unknown plagioclase from its Raman spectrum. Two calibration curves, one for albite-rich plagioclases and the other one for the anorthite-rich plagioclases, have been proposed by relating the peak linewidth of the most intense Raman band υa and the An content. It has been pointed out that the dependence of the composition from the linewidth can be obtained only for low structural plagioclases with a degree of order not far away from the references. The proposed tool has been tested on three mineralogical samples, two of meteoric origin and one of volcanic origin. Chemical compositions by Raman spectroscopy compare well, within an error of about 10%, with those obtained by elemental techniques. Further analyses on plagioclases with unknown composition will be necessary to validate the suggested method and introduce it as routine tool for the determination of the chemical composition from Raman data in planetary missions.
Resumo:
High throughput next generation sequencing, together with advanced molecular methods, has considerably enhanced the field of food microbiology. By overcoming biases associated with culture dependant approaches, it has become possible to achieve novel insights into the nature of food-borne microbial communities. In this thesis, several different sequencing-based approaches were applied with a view to better understanding microbe associated quality defects in cheese. Initially, a literature review provides an overview of microbe-associated cheese quality defects as well as molecular methods for profiling complex microbial communities. Following this, 16S rRNA sequencing revealed temporal and spatial differences in microbial composition due to the time during the production day that specific commercial cheeses were manufactured. A novel Ion PGM sequencing approach, focusing on decarboxylase genes rather than 16S rRNA genes, was then successfully employed to profile the biogenic amine producing cohort of a series of artisanal cheeses. Investigations into the phenomenon of cheese pinking formed the basis of a joint 16S rRNA and whole genome shotgun sequencing approach, leading to the identification of Thermus species and, more specifically, the pathway involved in production of lycopene, a red coloured carotenoid. Finally, using a more traditional approach, the effect of addition of a facultatively heterofermentative Lactobacillus (Lactobacillus casei) to a Swiss-type cheese, in which starter activity was compromised, was investigated from the perspective of its ability to promote gas defects and irregular eye formation. X-ray computed tomography was used to visualise, using a non-destructive method, the consequences of the undesirable gas formation that resulted. Ultimately this thesis has demonstrated that the application of molecular techniques, such as next generation sequencing, can provide a detailed insight into defect-causing microbial populations present and thereby may underpin approaches to optimise the quality and consistency of a wide variety of cheeses.
Resumo:
Hysteresis measurements have been carried out on a suite of ocean-floor basalts with ages ranging from Quaternary to Cretaceous. Approximately linear, yet separate, relationships between coercivity (Bc) and the ratio of saturation remanence/saturation magnetization (Mrs/Ms) are observed for massive doleritic basalts with low-Ti magnetite and for pillow basalts with multi-domain titanomagnetites (with x= 0.6). Even when the MORB has undergone lowtemperature oxidation resulting in titanomaghemite, the parameters are still distinguishable, although offset from the trend for unoxidized multidomain titanomagnetite. The parameters for these iron oxides with different titanium content reveal contrasting trends that can be explained by the different saturation magnetizations of the mineral types. This plot provides a previously underutilized and non-destructive method to detect the presence of low-titanium magnetite in igneous rocks, notably MORB.
Resumo:
Increasing anthropogenic pressures urge enhanced knowledge and understanding of the current state of marine biodiversity. This baseline information is pivotal to explore present trends, detect future modifications and propose adequate management actions for marine ecosystems. Coralligenous outcrops are a highly diverse and structurally complex deep-water habitat faced with major threats in the Mediterranean Sea. Despite its ecological, aesthetic and economic value, coralligenous biodiversity patterns are still poorly understood. There is currently no single sampling method that has been demonstrated to be sufficiently representative to ensure adequate community assessment and monitoring in this habitat. Therefore, we propose a rapid non-destructive protocol for biodiversity assessment and monitoring of coralligenous outcrops providing good estimates of its structure and species composition, based on photographic sampling and the determination of presence/absence of macrobenthic species. We used an extensive photographic survey, covering several spatial scales (100s of m to 100s of km) within the NW Mediterranean and including 2 different coralligenous assemblages: Paramuricea clavata (PCA) and Corallium rubrum assemblage (CRA). This approach allowed us to determine the minimal sampling area for each assemblage (5000 cm² for PCA and 2500 cm²for CRA). In addition, we conclude that 3 replicates provide an optimal sampling effort in order to maximize the species number and to assess the main biodiversity patterns of studied assemblages in variability studies requiring replicates. We contend that the proposed sampling approach provides a valuable tool for management and conservation planning, monitoring and research programs focused on coralligenous outcrops, potentially also applicable in other benthic ecosystems
Resumo:
Even though much improvement has been made in plant transformation methods, the screening of transgenic plants is often a laborious work. Most approaches for detecting the transgene in transformed plants are still timeconsuming, and can be quite expensive. The objective of this study was to search for a simpler method to screen for transgenic plants. The infiltration of kanamycin (100 mg/mL) into tobacco leaves resulted in conspicuous chlorotic spots on the non-transgenic plant leaves, while no spots were seen on the leaves of transformed plants. This reaction occurred regardless of age of the tested plants, and the method has proven to be simple, fast, non-destructive, relatively cheap, and reliable. These results were comparable to those obtained by the polymerase chain reaction (PCR) amplification of the transgene using specific primers.
Resumo:
En raison de la grande résolution des photographies des échantillons, celles-ci se trouvent dans un fichier complémentaire, puisque les conditions de forme imposées ne permettaient pas l'affichage intégral de ces images au sein du mémoire.
Resumo:
The motivatitni for" the present work is from .a project sanctioned by TSRO. The work involved the development of a quick and reliable test procedure using microwaves, for tflue inspection of cured propellant samples and a method to monitor the curing conditions of propellant mix undergoing the curing process.Normal testing CHE the propellant samples involvecuttimg a piece from each carton and testing it for their tensile strength. The values are then compared with standard ones and based on this result the sample isaccepted or rejected. The tensile strength is a measure ofdegree of cure of the propellant mix. But this measurementis a destructive procedure as it involves cutting of the sample. Moreover, it does not guarantee against nonuniform curing due to power failure, hot air-line failure,operator error etc. This necessitated the need for the development of a quick and reliable non-destructive test procedure.
Resumo:
International Perspective The development of GM technology continues to expand into increasing numbers of crops and conferred traits. Inevitably, the focus remains on the major field crops of soybean, maize, cotton, oilseed rape and potato with introduced genes conferring herbicide tolerance and/or pest resistance. Although there are comparatively few GM crops that have been commercialised to date, GM versions of 172 plant species have been grown in field trials in 31 countries. European Crops with Containment Issues Of the 20 main crops in the EU there are four for which GM varieties are commercially available (cotton, maize for animal feed and forage, and oilseed rape). Fourteen have GM varieties in field trials (bread wheat, barley, durum wheat, sunflower, oats, potatoes, sugar beet, grapes, alfalfa, olives, field peas, clover, apples, rice) and two have GM varieties still in development (rye, triticale). Many of these crops have hybridisation potential with wild and weedy relatives in the European flora (bread wheat, barley, oilseed rape, durum wheat, oats, sugar beet and grapes), with escapes (sunflower); and all have potential to cross-pollinate fields non-GM crops. Several fodder crops, forestry trees, grasses and ornamentals have varieties in field trials and these too may hybridise with wild relatives in the European flora (alfalfa, clover, lupin, silver birch, sweet chestnut, Norway spruce, Scots pine, poplar, elm, Agrostis canina, A. stolonifera, Festuca arundinacea, Lolium perenne, L. multiflorum, statice and rose). All these crops will require containment strategies to be in place if it is deemed necessary to prevent transgene movement to wild relatives and non-GM crops. Current Containment Strategies A wide variety of GM containment strategies are currently under development, with a particular focus on crops expressing pharmaceutical products. Physical containment in greenhouses and growth rooms is suitable for some crops (tomatoes, lettuce) and for research purposes. Aquatic bioreactors of some non-crop species (algae, moss, and duckweed) expressing pharmaceutical products have been adopted by some biotechnology companies. There are obvious limitations of the scale of physical containment strategies, addressed in part by the development of large underground facilities in the US and Canada. The additional resources required to grow plants underground incurs high costs that in the long term may negate any advantage of GM for commercial productioNatural genetic containment has been adopted by some companies through the selection of either non-food/feed crops (algae, moss, duckweed) as bio-pharming platforms or organisms with no wild relatives present in the local flora (safflower in the Americas). The expression of pharmaceutical products in leafy crops (tobacco, alfalfa, lettuce, spinach) enables growth and harvesting prior to and in the absence of flowering. Transgenically controlled containment strategies range in their approach and degree of development. Plastid transformation is relatively well developed but is not suited to all traits or crops and does not offer complete containment. Male sterility is well developed across a range of plants but has limitations in its application for fruit/seed bearing crops. It has been adopted in some commercial lines of oilseed rape despite not preventing escape via seed. Conditional lethality can be used to prevent flowering or seed development following the application of a chemical inducer, but requires 100% induction of the trait and sufficient application of the inducer to all plants. Equally, inducible expression of the GM trait requires equally stringent application conditions. Such a method will contain the trait but will allow the escape of a non-functioning transgene. Seed lethality (‘terminator’ technology) is the only strategy at present that prevents transgene movement via seed, but due to public opinion against the concept it has never been trialled in the field and is no longer under commercial development. Methods to control flowering and fruit development such as apomixis and cleistogamy will prevent crop-to-wild and wild-to-crop pollination, but in nature both of these strategies are complex and leaky. None of the genes controlling these traits have as yet been identified or characterised and therefore have not been transgenically introduced into crop species. Neither of these strategies will prevent transgene escape via seed and any feral apomicts that form are arguably more likely to become invasives. Transgene mitigation reduces the fitness of initial hybrids and so prevents stable introgression of transgenes into wild populations. However, it does not prevent initial formation of hybrids or spread to non-GM crops. Such strategies could be detrimental to wild populations and have not yet been demonstrated in the field. Similarly, auxotrophy prevents persistence of escapes and hybrids containing the transgene in an uncontrolled environment, but does not prevent transgene movement from the crop. Recoverable block of function, intein trans-splicing and transgene excision all use recombinases to modify the transgene in planta either to induce expression or to prevent it. All require optimal conditions and 100% accuracy to function and none have been tested under field conditions as yet. All will contain the GM trait but all will allow some non-native DNA to escape to wild populations or to non-GM crops. There are particular issues with GM trees and grasses as both are largely undomesticated, wind pollinated and perennial, thus providing many opportunities for hybridisation. Some species of both trees and grass are also capable of vegetative propagation without sexual reproduction. There are additional concerns regarding the weedy nature of many grass species and the long-term stability of GM traits across the life span of trees. Transgene stability and conferred sterility are difficult to trial in trees as most field trials are only conducted during the juvenile phase of tree growth. Bio-pharming of pharmaceutical and industrial compounds in plants Bio-pharming of pharmaceutical and industrial compounds in plants offers an attractive alternative to mammalian-based pharmaceutical and vaccine production. Several plantbased products are already on the market (Prodigene’s avidin, β-glucuronidase, trypsin generated in GM maize; Ventria’s lactoferrin generated in GM rice). Numerous products are in clinical trials (collagen, antibodies against tooth decay and non-Hodgkin’s lymphoma from tobacco; human gastric lipase, therapeutic enzymes, dietary supplements from maize; Hepatitis B and Norwalk virus vaccines from potato; rabies vaccines from spinach; dietary supplements from Arabidopsis). The initial production platforms for plant-based pharmaceuticals were selected from conventional crops, largely because an established knowledge base already existed. Tobacco and other leafy crops such as alfalfa, lettuce and spinach are widely used as leaves can be harvested and no flowering is required. Many of these crops can be grown in contained greenhouses. Potato is also widely used and can also be grown in contained conditions. The introduction of morphological markers may aid in the recognition and traceability of crops expressing pharmaceutical products. Plant cells or plant parts may be transformed and maintained in culture to produce recombinant products in a contained environment. Plant cells in suspension or in vitro, roots, root cells and guttation fluid from leaves may be engineered to secrete proteins that may be harvested in a continuous, non-destructive manner. Most strategies in this category remain developmental and have not been commercially adopted at present. Transient expression produces GM compounds from non-GM plants via the utilisation of bacterial or viral vectors. These vectors introduce the trait into specific tissues of whole plants or plant parts, but do not insert them into the heritable genome. There are some limitations of scale and the field release of such crops will require the regulation of the vector. However, several companies have several transiently expressed products in clinical and pre-clinical trials from crops raised in physical containment.