960 resultados para Non-constant coefficient diffusion equations
Resumo:
The classical wave-of-advance model of the neolithic transition (i.e., the shift from hunter-gatherer to agricultural economies) is based on Fisher's reaction-diffusion equation. Here we present an extension of Einstein's approach to Fickian diffusion, incorporating reaction terms. On this basis we show that second-order terms in the reaction-diffusion equation, which have been neglected up to now, are not in fact negligible but can lead to important corrections. The resulting time-delayed model agrees quite well with observations
Resumo:
OBJECTIVE To validate terms of nursing language especially for physical-motor rehabilitation and map them to the terms of ICNP® 2.0. METHOD A methodology research based on document analysis, with collection and analysis of terms from 1,425 records. RESULTS 825 terms were obtained after the methodological procedure, of which 226 had still not been included in the ICNP® 2.0. These terms were distributed as follows: 47 on the Focus axis; 15 on the Judgment axis; 31 on the Action axis; 25 on the Location axis; 102 on the Means axis; three on the Time axis; and three on the Client axis. All non-constant terms in ICNP® have been validated by experts, having reached an agreement index ≥0.80. CONCLUSION The ICNP® is applicable and used in nursing care for physical-motor rehabilitation.
Resumo:
The speed and width of front solutions to reaction-dispersal models are analyzed both analytically and numerically. We perform our analysis for Laplace and Gaussian distribution kernels, both for delayed and nondelayed models. The results are discussed in terms of the characteristic parameters of the models
Resumo:
[spa] La participación del trabajo en la renta nacional es constante bajo los supuestos de una función de producción Cobb-Douglas y competencia perfecta. En este artículo se relajan estos supuestos y se investiga si el comportamiento no constante de la participación del trabajo en la renta nacional se explica por (i) una elasticidad de sustitución entre capital y trabajo no unitaria y (ii) competencia no perfecta en el mercado de producto. Nos centramos en España y los U.S. y estimamos una función de producción con elasticidad de sustitución constante y competencia imperfecta en el mercado de producto. El grado de competencia imperfecta se mide a través del cálculo del price markup basado en laaproximación dual. Mostramos que la elasticidad de sustitución es mayor que uno en España y menor que uno en los US. También mostramos que el price markup aleja la elasticidad de sustitución de uno, lo aumenta en España, lo reduce en los U.S. Estos resultados se utilizan para explicar la senda decreciente de la participación del trabajo en la renta nacional, común a ambas economías, y sus contrastadas sendas de capital.
Resumo:
[cat] Hi ha una literatura creixent que considera desviacions del descompte exponencial estàndar. En aquest article combinem preferències temporalment inconsistents (descompte no constant) amb preferències recursives. Aquest formalisme l’apliquem a les propietats relatives a la demanda del que anomenem bens ardus. La justificació del descompte no estàndar proposat ve donada pel fet que la producció i el consum no són separables per a aquest tipus de bens. L’esforç implica que els individus descompten el consum d’aquests bens d’una manera especial, amb la presència de preferències esbiaixades i d’un ajustament recursiu dinàmic. D’aquesta manera, la voluntat de realitzar un esforç, caracteritzada per un factor de descompte, resulta endògena.
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
The scaling up of the Hot Wire Chemical Vapor Deposition (HW-CVD) technique to large deposition area can be done using a catalytic net of equal spaced parallel filaments. The large area deposition limit is defined as the limit whenever a further increment of the catalytic net area does not affect the properties of the deposited film. This is the case when a dense catalytic net is spread on a surface considerably larger than that of the film substrate. To study this limit, a system able to hold a net of twelve wires covering a surface of about 20 cm x 20 cm was used to deposit amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon over a substrate of 10 cm x 10 cm placed at a filament-substrate distance ranging from 1 to 2 cm. The uniformity of the film thickness d and optical constants, n(x, λ) and α(x,¯hω), was studied via transmission measurements. The thin film uniformity as a function of the filament-substrate distance was studied. The experimental thickness profile was compared with the theoretical result obtained solving the diffusion equations. The optimization of the filament-substrate distance allowed obtaining films with inhomogeneities lower than ±2.5% and deposition rates higher than 1 nm/s and 4.5 nm/s for (μc-Si:H) and (a-Si:H), respectively.
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
[cat] Hi ha una literatura creixent que considera desviacions del descompte exponencial estàndar. En aquest article combinem preferències temporalment inconsistents (descompte no constant) amb preferències recursives. Aquest formalisme l’apliquem a les propietats relatives a la demanda del que anomenem bens ardus. La justificació del descompte no estàndar proposat ve donada pel fet que la producció i el consum no són separables per a aquest tipus de bens. L’esforç implica que els individus descompten el consum d’aquests bens d’una manera especial, amb la presència de preferències esbiaixades i d’un ajustament recursiu dinàmic. D’aquesta manera, la voluntat de realitzar un esforç, caracteritzada per un factor de descompte, resulta endògena.
Resumo:
We present an analytic and numerical study of the effects of external fluctuations in active media. Our analytical methodology transforms the initial stochastic partial differential equations into an effective set of deterministic reaction-diffusion equations. As a result we are able to explain and make quantitative predictions on the systematic and constructive effects of the noise, for example, target patterns created out of noise and traveling or spiral waves sustained by noise. Our study includes the case of realistic noises with temporal and spatial structures.
Resumo:
We consider the distribution of cross sections of clusters and the density-density correlation functions for the A+B¿0 reaction. We solve the reaction-diffusion equations numerically for random initial distributions of reactants. When both reactant species have the same diffusion coefficients the distribution of cross sections and the correlation functions scale with the diffusion length and obey superuniversal laws (independent of dimension). For different diffusion coefficients the correlation functions still scale, but the scaling functions depend on the dimension and on the diffusion coefficients. Furthermore, we display explicitly the peculiarities of the cluster-size distribution in one dimension.
Resumo:
A pacemaker, regularly emitting chemical waves, is created out of noise when an excitable photosensitive Belousov-Zhabotinsky medium, strictly unable to autonomously initiate autowaves, is forced with a spatiotemporal patterned random illumination. These experimental observations are also reproduced numerically by using a set of reaction-diffusion equations for an activator-inhibitor model, and further analytically interpreted in terms of genuine coupling effects arising from parametric fluctuations. Within the same framework we also address situations of noise-sustained propagation in subexcitable media.
Resumo:
[spa] La participación del trabajo en la renta nacional es constante bajo los supuestos de una función de producción Cobb-Douglas y competencia perfecta. En este artículo se relajan estos supuestos y se investiga si el comportamiento no constante de la participación del trabajo en la renta nacional se explica por (i) una elasticidad de sustitución entre capital y trabajo no unitaria y (ii) competencia no perfecta en el mercado de producto. Nos centramos en España y los U.S. y estimamos una función de producción con elasticidad de sustitución constante y competencia imperfecta en el mercado de producto. El grado de competencia imperfecta se mide a través del cálculo del price markup basado en laaproximación dual. Mostramos que la elasticidad de sustitución es mayor que uno en España y menor que uno en los US. También mostramos que el price markup aleja la elasticidad de sustitución de uno, lo aumenta en España, lo reduce en los U.S. Estos resultados se utilizan para explicar la senda decreciente de la participación del trabajo en la renta nacional, común a ambas economías, y sus contrastadas sendas de capital.