935 resultados para Nitrogen fixing algae


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nitrogen-fixing bacterium Sinorhizobium meliloti must adapt to diverse conditions encountered during its symbiosis with leguminous plants. We characterized a new symbiotically relevant gene, emrR (SMc03169), whose product belongs to the TetR family of repressors and is divergently transcribed from emrAB genes encoding a putative major facilitator superfamily-type efflux pump. An emrR deletion mutant produced more succinoglycan, displayed increased cell-wall permeability, and exhibited higher tolerance to heat shock. It also showed lower tolerance to acidic conditions, a reduced production of siderophores, and lower motility and biofilm formation. The simultaneous deletion of emrA and emrR genes restored the mentioned traits to the wild-type phenotype, except for survival under heat shock, which was lower than that displayed by the wild-type strain. Furthermore, the ΔemrR mutant as well as the double ΔemrAR mutant was impaired in symbiosis with Medicago sativa; it formed fewer nodules and competed poorly with the wild-type strain for nodule colonization. Expression profiling of the ΔemrR mutant showed decreased expression of genes involved in Nod-factor and rhizobactin biosynthesis and in stress responses. Expression of genes directing the biosynthesis of succinoglycan and other polysaccharides were increased. EmrR may therefore be involved in a regulatory network targeting membrane and cell wall modifications in preparation for colonization of root hairs during symbiosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhizobia are important soil bacteria due to their ability to establish nitrogen-fixing symbioses with legume plants. In this dual lifestyle, as free-living bacteria or as plant symbiont, rhizobia are often exposed to different environmental stresses. The present chapter overviews the current knowledge on the heat shock response of rhizobia, highlighting how these large genome bacteria respond to heat from a transcriptional point of view. Response to heat shock in rhizobia involves genome wide changes in the transcriptome that may affect more than 30% of the genome and involve all replicons. In addition to the expected upregulation of genes already known to be involved in stress response (dnaK, groEL, ibpA, clpB), the reports on the heat shock response in rhizobia also showed particular aspects of stress response in these resourceful bacteria. The transcriptional response to heat in rhizobia includes the overexpression of a large number of genes involved in transcription and carbohydrate transport and metabolism. Additional studies are needed in order to better understand the transcriptional regulation of stress response in bacteria with large genomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Several legumes have natural ability to associate with nitrogen - fixing bacteria known as rhizobia. The efficiency of this association depends on the plant and bacterial genotype and the edaphoclimatic conditions. Peanut is a tropical legume able to associate with a wide range of rhizobia and the selection of efficient bacteria is important to increase the nitrogen fixation in this crop. In order to investigate the agronomic efficiency of two Bradyrhizobiumstrains, two peanut genotypes were used in field trails carried out in three environments located at Brazilian Northeast. The genotypes (BR1 and L7 Bege) were submitted to rhizobial inoculation (SEMIA 6144 or ESA 123, both Bradyrhizobium strains, and chemical nitrogen fertilization in randomized block design experiments. The following traits were analyzed: flowering (F), main axis height (MAH), number of nodules/plant (NN), number of pods/plant (NP) and weight of pods (WP). Differential responses were found in all to treatments to NN, NP and WP, in the three environments studied. Overall, ESA 123 showed good agronomic performance inducing higher pod production. The results supportthe evaluation of the Bradyrhizobium in further experiments aiming at its recommendation to commercial inoculants in Brazilian Northeast region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabalho teve como objetivo avaliar a ocorrencia, isolar e identificar fungos micorrízicos carbunculares associados a cultura da mandioca (Manihot esculenta). Amostras de solo rizosférico e de varias partes da planta (raízes, tubérculos, manivas e folhas) de locais nos Estados do Rio de Janeiro, São Paulo e Paraná, foram inoculadas nos meios LGI-P, NFb-malato e NFb-GOC, avaliando-se o numero mais provável de células e a atividade de redução de acetileno. Bactérias diazotróficas foram isoladas de todas as partes da planta, com exceção das folhas, sendo identificadas como Klebsiella sp., Azospirillum lipoferum e uma bactéria denominada "E", provavelmente pertencente ao gênero Burkholderia. A bactéria E acumulou de 7,63 mg a 14,84 mg de N/g de C em meio semi-solido, isento de N, e conseguiu manter a capacidade de fixação biológica de N, mesmo apos uma dezena de repicagens consecutivas. A colonização micorrízica variou de 31% a 69%, e a densidade de esporos de 10 a 384 esporos/100 mL de solo, predominando as espécies Entrophospora colombiana e Acaulospora scrobiculata no Rio de Janeiro, A. scrobiculata e Scutellospora heterogama no Paraná e em Piracicaba (São Paulo) e A. appendicula e S. pellucida em Campinas (São Paulo). This study was performed to evaluate the occurrence and to isolate and identify diazotrophic bacteria and arbuscular mycorrhizal fungi associated with the cassava (Manihot esculenta) crop. Samples from rhizosperical soil, roots, tubers, stems and leaves from several localities of the States of Rio de Janeiro, Sao Paulo and Parana, in Brazil, were inoculated in three media specific for diazotrophic associative bacteria, LG1-P, NFb-malate and NFb-GOC, evaluating the most probable number of cells and the acetylene-reducing activity. Diazotrophic bacteria were detected in all plant parts except for the leaves, and were identified as Klebsiella sp., Azospirillum lipoferum and a bacterium called "E", probably belonging to the Burkholderia genus. Bacterium E was able to accumulate, in the N-free semi-solid media, from 7.63 to 14.84 mg of N/g of C and to maintain N fixation capacity after ten consecutive transferences. Mycorrhizal root colonization varied from 31% to 69% and spore density from 10 to 384 spores/100 mL of soil, predominanting the species Entrophospora colombiana and Acaulospora scrobiculata in Rio de Janeiro, A. scrobiculata and Scutellospora heterogama in Parana and in Piracicaba (Sao Paulo), and A. appendicula and S. pellucida in Campinas (Sao Paulo).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

At two locations in the Atlantic Ocean (DSDP Sites 367 and 530) early to middle Cretaceous organic-carbon-rich beds (black shales) were found to have significantly lower delta15N values (lower 15N/14N ratios) than adjacent organic-carbon-poor beds (white limestones or green claystones). While these lithologies are of marine origin, the black strata in particular have delta15N values that are significantly lower than those previously found in the marine sediment record and most contemporary marine nitrogen pools. In contrast, black, organic-carbon-rich beds at a third site (DSDP Site 603) contain predominantly terrestrial organic matter and have C- and N-isotopic compositions similar to organic matter of modern terrestrial origin. The recurring 15N depletion in the marine-derived Cretaceous sequences prove that the nitrogen they contain is the end result of an episodic and atypical biogeochemistry. Existing isotopic and other data indicate that the low 15N relative abundance is the consequence of pelagic rather than post-depositional processes. Reduced ocean circulation, increased denitrification, and, hence, reduced euphoric zone nitrate availability may have led to Cretaceous phytoplankton assemblages that were periodically dominated by N2-fixing blue-green algae, a possible source of this sediment 15N-depletion. Lack of parallel isotopic shifts in Cretaceous terrestrially-derived nitrogen (Site 603) argues that the above change in nitrogen cycling during this period did not extend beyond the marine environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the sensitivity of algae towards silver nanoparticles with OECD test medium and lower nutrient concentrations under standard test conditions to improve comparability and to exclude any other confounding factor aside nutrient levels. Two unicellular freshwater microalgae Desmodesmus subspicatus and Raphidocelis subcapitata were chosen due to their status as standard test organisms for the algae growth inhibition test and the response to changes in nutrient supply was compared. The original medium was used as the reference (standard). For the other four media, the amount of either nitrogen or phosphorus in the medium was lowered from half (50%) to one-fourth (25 %) of that of the OECD guideline, resulting in the following media: 50% N, 25% N, 50% P and 25% P medium. As test substance, the OECD reference material NM-300K was used. For this reason, the characterization of AgNP was done using DLS and Absorption spectra (UV/vis). Actual silver concentrations and ionic silver concentrations were measured at the highest test concentration used (100 µg Ag L-1) in R. subcapitata treatments only to reduce the number of samples. All tests were run according to the OECD guideline 201 with sterilized 50 mL cell culture flask. Each medium was tested using the test conditions for culturing with 3 replicates. Test concentrations for both algae species were 0, 25, 50 and 100 µg Ag L-1 for OECD, 50% P and 25% P while for both N reductions, the silver concentrations were 0, 10, 25 and 100 µg Ag L-1. Samples for determining the algal density were taken at every 24 h.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of temperature on the life table, and of seston quality on the individual growth and reproduction of cladocerans from a tropical lake were tested in the laboratory. Life-table experiments were carried out at 17 degrees C, 23 degrees C, and 27 degrees C. Growth bioassays tested the influence of natural seston fractions, separated by net filtration, on cladocerans. The treatments were: (1) total seston plus Scenedesmus spinosus (1 mg C.L(-1)), (2) seston <= 36 mu m, and (3) seston >36 mu m. Phytoplankton composition, density, and biomass were evaluated during growth experiments, together with sestonic carbon, nitrogen, and phosphorus concentrations. The intrinsic rates of natural increase were higher for Moina micrura and Daphnia ambigua at 27 degrees C compared to 17 degrees C. The age at first reproduction of both species was delayed at 17 degrees C. Growth rates and fecundity of M. micrura were higher in the seston fraction <= 36 mu m than in the fraction > 36 mu m. Higher growth rates and fecundity of Moina minuta were observed in the seston enriched with the green alga in comparison to the seston <= 36 mu m and > 36 mu m. Bosmina longirostris was unable to reproduce at 17 degrees C and to grow in the seston > 36 mu m in one experiment. High densities and/or biomass of large colonial and filamentous algae present in the larger seston fraction could have contributed to reduce growth and reproduction. Episodes of food-quantity limitation may occur, but there was no evidence of mineral limitation, although seston C:P and C:N ratios were always above the limiting values assumed for temperate water bodies. The C:P and C:N ratios arc highly influenced by carbon that originates primarily from resuspended detritus from the lake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental effects on the concentration of photosynthetic pigments in micro-algae can be explained by dynamics of photosystem synthesis and deactivation. A model that couples photosystem losses to the relative cellular rates of energy harvesting (light absorption) and assimilation predicts optimal concentrations of light-harvesting pigments and balanced energy flow under environmental conditions that affect light availability and metabolic rates. Effects of light intensity, nutrient supply and temperature on growth rate and pigment levels were similar to general patterns observed across diverse micro-algal taxa. Results imply that dynamic behaviour associated with photophysical stress, and independent of gene regulation, might constitute one mechanism for photo-acclimation of photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several published studies claim that high rates of N-2 fixation occur in sugarcane and sorghum, and have ascribed this result to infection by the bacterium Gluconacetobacter diazotrophicus, abetted by arbuscular mycorrhizal infection ( Glomus clarum). These results have not been confirmed within Australia. In this study, G. diazotrophicus was detected in stalks of field-grown sugarcane in Australia ( based on phenotypic tests, and a PCR test using species-specific primers developed to amplify a fragment of the G. diazotrophicus 16S rRNA gene). Isolates were nitrogenase positive ( acetylene reduction assay) in vitro. However, in glasshouse trials involving inoculation of sugarcane setts with G. diazotrophicus, co-inoculation with mycorrhizae, and plant growth under low N status, recovery of bacteria from maturing plants was variable. At 165 days from planting, no appreciable N-2-fixation, as assessed by dry weight increment, N budget, or N-15 ratio, of either an Australian or a Brazilian cultivar of sugarcane, or a sorghum cultivar, was achieved. We conclude that a N-2-fixing sugarcane - G. diazotrophicus association is not easily achievable, being primarily limited by a lack of infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pre-ingestive selection of microphytobenthic algae by the cockle Cerastoderma edule was studied in comparison with diets containing the pelagic diatom Phaeodactylum tricomutum. Treatments with the different diets covered a range of seston concentrations and organic content similar to field conditions. Rejection rates of C. edule exposed to the different treatments were significantly correlated with the concentration of total particulate matter. No significant differences in total rejection rates were found between pelagic and benthic diets. Organic rejection rate was significantly correlated with particulate organic matter of the treatments and no significant differences were found between both diets. Selection efficiency was significantly correlated with particulate organic matter concentration in both diets and no significant differences were found between the diets. Analysis of the pseudofeces composition by flow cytometry from cockles exposed to a mixed diet of microphytobenthic algae and P. tricornutum, showed a preferential ingestion of the pelagic diatom. Benthic species, such as small pennates and Navicula sp., were preferentially ingested in comparison to larger microphytobenthic species. The largest microphytobenthic species, Cylindrotheca sp., was significantly rejected. In general, C. edule is an opportunistic filter feeder that takes advantage of both pelagic and benthic algal cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large number of herbaceous and woody plants from tropical woodland, savanna, and monsoon forest were analysed to determine the impact of environmental factors (nutrient and water availability, fire) and biological factors (microbial associations, systematics) on plant delta(15)N values. Foliar delta(15)N values of herbaceous and woody species were not related to growth form or phenology, but a strong relationship existed between mycorrhizal status and plant delta(15)N. In woodland and savanna, woody species with ectomycorrhizal (ECM) associations and putative N-2-fixing species with ECM/arbuscular (AM) associations had lowest foliar delta(15)N values (1.0-0.6parts per thousand), AM species had mostly intermediate delta(15)N values (average +0.6parts per thousand), while non-mycorrhizal Proteaceae had highest delta(15)N values (+2.9 to +4.1parts per thousand). Similar differences in foliar delta(15)N were observed between AM (average 0.1 and 0.2parts per thousand) and non-mycorrhizal (average +0.8 and +0.3parts per thousand) herbaceous species in woodland and savanna. Leguminous savanna species had significantly higher leaf N contents (1.8-2.5% N) than non-fixing species (0.9-1.2% N) indicating substantial N acquisition via N-2 fixation. Monsoon forest species had similar leaf N contents (average 2.4% N) and positive delta(15)N values (+0.9 to +2.4parts per thousand). Soil nitrification and plant NO3- use was substantially higher in monsoon forest than in woodland or savanna. In the studied communities, higher soil N content and nitrification rates were associated with more positive soil delta(15)N and plant delta(15)N. In support of this notion, Ficus, a high NO3- using taxa associated with NO3- rich sites in the savanna, had the highest delta(15)N values of all AM species in the savanna. delta(15)N of xylem sap was examined as a tool for studying plant delta(15)N relations. delta(15)N of xylem sap varied seasonally and between differently aged Acacia and other savanna species. Plants from annually burnt savanna had significantly higher delta(15)N values compared to plants from less frequently burnt savanna, suggesting that foliar N-15 natural abundance could be used as marker for assessing historic fire regimes. Australian woodland and savanna species had low leaf delta(15)N and N content compared to species from equivalent African communities indicating that Australian biota are the more N depauperate. The largest differences in leaf delta(15)N occurred between the dominant ECM Australian and African savanna (miombo) species, which were depleted and enriched in N-15, respectively. While the depleted delta(15)N of Australian ECM species are similar to those of previous reports on ECM species in natural plant communities, the N-15-enriched delta(15)N of African ECM species represent an anomaly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of dissolved nutrients on growth, nutrient content and uptake rates of Chaetomorpha linum in a Mediterranean coastal lagoon (Tancada, Ebro delta, NE Spain) was studied in laboratory experiments. Water was enriched with distinct forms of nitrogen, such as nitrate or ammonium and phosphorus. Enrichment with N, P or with both nutrients resulted in a significant increase in the tissue content of these nutrients. N-enrichment was followed by an increase in chlorophyll content after 4 days of treatment, although the difference was only significant when nitrate was added without P. P-enrichment had no significant effect on chlorophyll content. In all the treatments an increase in biomass was obseved after 10 days. This increase was higher in the N+P treatments. In all the treatments the uptake rate was significantly higher when nutrients were added than in control jars. The uptake rate of N, as ammonium, and P were significantly higher when they were added alone while that of N as nitrate was higher in the N+P treatment. In the P-enriched cultures, the final P-content of macroalgal tissues was ten-fold that of the initial tissue concentrations, thereby indicating luxury P-uptake. Moreover, at the end of the incubation the N:P ratio increased to 80, showing that P rather than N was the limiting factor for C. linum in the Tancada lagoon. The relatively high availability of N is related to the N inputs from rice fields that surround the lagoon and to P binding in sediments.