973 resultados para New Vehicles.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective To assess the level of compliance with the new law in the United Kingdom mandating penalties for rising a hand held mobile phone while driving, to compare compliance with this law with the one on the use of seat belts, and to compare compliance with these laws between drivers of four wheel drive vehicles and drivers of normal cars. Design Observational study with two phases-one within the grace period, the other starting one week after penalties were imposed on drivers using such telephones. Setting Three busy sites in London. Participants Drivers of 38 182 normal cars and 2944 four wheel drive vehicles. Main outcome measures Proportions of drivers seen to be using hand held mobile phones and not using seat belts. Results Drivers of four wheel drive vehicles were more likely than drivers of other cars to be seen using hand held mobile phones (8.2% v 2.0%) and not complying with the law on seat belts (19.5% v 15.0%). Levels of non-compliance with both laws were slightly higher in the penalty phase of observation, and breaking one law was associated with increased likelihood of breaking the other. Conclusions The level of non-compliance with the law on the use of hand held mobile phones by drivers in London is high, as is non-compliance with the law on seat belts. Drivers of four wheel drive vehicles were four times more likely than drivers of other cars to be seen using hand held mobile phones and slightly more likely not to comply with the law on seat belts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The emergence of the counter-globalisation movement in France has been accompanied by an apparent diversification of social protest repertoires. Protest events carried out by groups associated with a wide array of issues have been remarkable for their use of spectacular and novel actions, while civil disobedience campaigns have been prominent features of environmental and civil rights protests in particular. Drawing on a number of examples of contemporary environmental and global justice campaigns, opposing advertising, four-wheeled drive vehicles, nuclear energy and, especially, open field trials of genetically modified crops, this article discusses the rise of such new forms of protest, placing them in the wider context of transformations in protest repertoires in France. It identifies key examples of innovation, before discussing the twin processes of diffusion and domestication that shape them. It is argued that, although transnational agents and processes are key determinants of repertoire innovation, it is vital to identify the national, movement and sectoral contexts and discourses which enable the naturalisation and legitimisation of new action forms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles' location and motion information, range queries on current and history data, and prediction of vehicles' movement in the near future. ^ To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. ^ Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. ^ An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past two decades, many researchers have developed methods for the detection of structural defects at the early stages to operate the aerospace vehicles safely and to reduce the operating costs. The Surface Response to Excitation (SuRE) method is one of these approaches developed at FIU to reduce the cost and size of the equipment. The SuRE method excites the surface at a series of frequencies and monitors the propagation characteristics of the generated waves. The amplitude of the waves reaching to any point on the surface varies with frequency; however, it remains consistent as long as the integrity and strain distribution on the part is consistent. These spectral characteristics change when cracks develop or the strain distribution changes. The SHM methods may be used for many applications, from the detection of loose screws to the monitoring of manufacturing operations. A scanning laser vibrometer was used in this study to investigate the characteristics of the spectral changes at different points on the parts. The study started with detecting a load on a plate and estimating its location. The modifications on the part with manufacturing operations were detected and the Part-Based Manufacturing Process Performance Monitoring (PbPPM) method was developed. Hardware was prepared to demonstrate the feasibility of the proposed methods in real time. Using low-cost piezoelectric elements and the non-contact scanning laser vibrometer successfully, the data was collected for the SuRE and PbPPM methods. Locational force, loose bolts and material loss could be easily detected by comparing the spectral characteristics of the arriving waves. On-line methods used fast computational methods for estimating the spectrum and detecting the changing operational conditions from sum of the squares of the variations. Neural networks classified the spectrums when the desktop – DSP combination was used. The results demonstrated the feasibility of the SuRE and PbPPM methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moving objects database systems are the most challenging sub-category among Spatio-Temporal database systems. A database system that updates in real-time the location information of GPS-equipped moving vehicles has to meet even stricter requirements. Currently existing data storage models and indexing mechanisms work well only when the number of moving objects in the system is relatively small. This dissertation research aimed at the real-time tracking and history retrieval of massive numbers of vehicles moving on road networks. A total solution has been provided for the real-time update of the vehicles location and motion information, range queries on current and history data, and prediction of vehicles movement in the near future. To achieve these goals, a new approach called Segmented Time Associated to Partitioned Space (STAPS) was first proposed in this dissertation for building and manipulating the indexing structures for moving objects databases. Applying the STAPS approach, an indexing structure of associating a time interval tree to each road segment was developed for real-time database systems of vehicles moving on road networks. The indexing structure uses affordable storage to support real-time data updates and efficient query processing. The data update and query processing performance it provides is consistent without restrictions such as a time window or assuming linear moving trajectories. An application system design based on distributed system architecture with centralized organization was developed to maximally support the proposed data and indexing structures. The suggested system architecture is highly scalable and flexible. Finally, based on a real-world application model of vehicles moving in region-wide, main issues on the implementation of such a system were addressed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hardly a day goes by without the release of a handful of news stories about autonomous vehicles (or AVs for short). The proverbial “tipping point” of awareness has been reached in the public consciousness as AV technology is quickly becoming the new focus of firms from Silicon Valley to Detroit and beyond. Automation has, and will continue to have far-reaching implications for many human activities, but for driving, the technology is here. Google has been in talks with automaker Ford (1), Elon Musk has declared that Tesla will have the appropriate technology in two years (2), GM is paired-up with Lyft (3), Uber is in development-mode (4), Microsoft and Volvo have announced a partnership (5), Apple has been piloting its top-secret project “Titan” (6), Toyota is working on its own technology (7), as is BMW (8). Audi (9) made a splash by sending a driverless A7 concept car 550 miles from San Francisco to Las Vegas just in time to roll-into the 2016 Consumer Electronics Show. Clearly, the race is on.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flapping Wing Aerial Vehicles (FWAVs) have the capability to combine the benefits of both fixed wing vehicles and rotary vehicles. However, flight time is limited due to limited on-board energy storage capacity. For most Unmanned Aerial Vehicle (UAV) operators, frequent recharging of the batteries is not ideal due to lack of nearby electrical outlets. This imposes serious limitations on FWAV flights. The approach taken to extend the flight time of UAVs was to integrate photovoltaic solar cells onto different structures of the vehicle to harvest and use energy from the sun. Integration of the solar cells can greatly improve the energy capacity of an UAV; however, this integration does effect the performance of the UAV and especially FWAVs. The integration of solar cells affects the ability of the vehicle to produce the aerodynamic forces necessary to maintain flight. This PhD dissertation characterizes the effects of solar cell integration on the performance of a FWAV. Robo Raven, a recently developed FWAV, is used as the platform for this work. An additive manufacturing technique was developed to integrate photovoltaic solar cells into the wing and tail structures of the vehicle. An approach to characterizing the effects of solar cell integration to the wings, tail, and body of the UAV is also described. This approach includes measurement of aerodynamic forces generated by the vehicle and measurements of the wing shape during the flapping cycle using Digital Image Correlation. Various changes to wing, body, and tail design are investigated and changes in performance for each design are measured. The electrical performance from the solar cells is also characterized. A new multifunctional performance model was formulated that describes how integration of solar cells influences the flight performance. Aerodynamic models were developed to describe effects of solar cell integration force production and performance of the FWAV. Thus, performance changes can be predicted depending on changes in design. Sensing capabilities of the solar cells were also discovered and correlated to the deformation of the wing. This demonstrated that the solar cells were capable of: (1) Lightweight and flexible structure to generate aerodynamic forces, (2) Energy harvesting to extend operational time and autonomy, (3) Sensing of an aerodynamic force associated with wing deformation. Finally, different flexible photovoltaic materials with higher efficiencies are investigated, which enable the multifunctional wings to provide enough solar power to keep the FWAV aloft without batteries as long as there is enough sunlight to power the vehicle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resource allocation decisions are made to serve the current emergency without knowing which future emergency will be occurring. Different ordered combinations of emergencies result in different performance outcomes. Even though future decisions can be anticipated with scenarios, previous models follow an assumption that events over a time interval are independent. This dissertation follows an assumption that events are interdependent, because speed reduction and rubbernecking due to an initial incident provoke secondary incidents. The misconception that secondary incidents are not common has resulted in overlooking a look-ahead concept. This dissertation is a pioneer in relaxing the structural assumptions of independency during the assignment of emergency vehicles. When an emergency is detected and a request arrives, an appropriate emergency vehicle is immediately dispatched. We provide tools for quantifying impacts based on fundamentals of incident occurrences through identification, prediction, and interpretation of secondary incidents. A proposed online dispatching model minimizes the cost of moving the next emergency unit, while making the response as close to optimal as possible. Using the look-ahead concept, the online model flexibly re-computes the solution, basing future decisions on present requests. We introduce various online dispatching strategies with visualization of the algorithms, and provide insights on their differences in behavior and solution quality. The experimental evidence indicates that the algorithm works well in practice. After having served a designated request, the available and/or remaining vehicles are relocated to a new base for the next emergency. System costs will be excessive if delay regarding dispatching decisions is ignored when relocating response units. This dissertation presents an integrated method with a principle of beginning with a location phase to manage initial incidents and progressing through a dispatching phase to manage the stochastic occurrence of next incidents. Previous studies used the frequency of independent incidents and ignored scenarios in which two incidents occurred within proximal regions and intervals. The proposed analytical model relaxes the structural assumptions of Poisson process (independent increments) and incorporates evolution of primary and secondary incident probabilities over time. The mathematical model overcomes several limiting assumptions of the previous models, such as no waiting-time, returning rule to original depot, and fixed depot. The temporal locations flexible with look-ahead are compared with current practice that locates units in depots based on Poisson theory. A linearization of the formulation is presented and an efficient heuristic algorithm is implemented to deal with a large-scale problem in real-time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of my Ph. D. thesis is to generalize a method for targeted anti-cancer drug delivery. Hydrophilic polymer-drug conjugates involve complicated synthesis; drug-encapsulated polymeric nanoparticles limit the loading capability of payloads. This thesis introduces the concept of nanoconjugates to overcome difficulties in synthesis and formulation. Drugs with hydroxyl group are able to initiate polyester synthesis in a regio- and chemo- selective way, with the mediation of ligand-tunable Zinc catalyst. Herein, three anti-cancer drugs are presented to demonstrate the high efficiency and selectivity in the method (Chapter 2-4). The obtained particles are stable in salt solution, releasing drugs over weeks in controlled manner. With the conjugation of aptamer, particles are capable to target prostate cancer cells in vitro. These results open the gateway to evaluate the in vivo efficacy of nanoconjugates for target cancer therapy (Chapter 5). Mechanism study of the polymerization leads to the discovery of chemosite selective synthesis of prodrugs with acrylate functional groups. Functional copolymer-drug conjugates will expand the scope of nanoconjugates (Chapter 6). Liposome-aptamer targeting drug delivery vehicle is well studied to achieve reversible cell-specific delivery of non-hydoxyl drugs e.g. cisplatin (Chapter 7). New monomers and polymerization mechanisms are explored for polyester in order to synthesize nanoconjugates with variety on properties (Chapter 8). Initial efforts to apply this type of prodrugs will be focused on the preparation of hydrogels for stem cell research (Chapter 9).