962 resultados para Neurotransmitters in epilepsy
Resumo:
Este trabalho avaliou o potencial cortical provocado visual de crianças com história de epilepsia com o objetivo de identificar marcadores eletrofisiológicos que indicassem alterações corticais em epilepsia. Foram estudados 34 sujeitos com história de epilepsia (18 sujeitos com epilepsia parcial e 16 com epilepsia generalizada). O grupo controle foi composto por 19 sujeitos sem história de crises epilépticas com faixa etária semelhante aos pacientes. Os componentes do potencial cortical provocado visual transiente para apresentação por padrão reverso de tabuleiros de xadrez foram avaliados quanto à amplitude, tempo implícito e razões de amplitude entre os componentes. Foi observado que os pacientes com epilepsia generalizada apresentaram componente N75 com amplitude maior que os demais grupos, enquanto as razões de amplitude N75/P100 e P100/N135foram menores em pacientes com epilepsia parcial que em outros grupos. Houve fraca correlação linear entre os parâmetros do potencial cortical provocado visual e a idade de início das crises epilépticas ou tempo de utilização das medicações antiepilépticas. Conclui-se que o componente N75 e as razões de amplitude N75/P100 e P100/N135 podem ser bons indicadores eletrofisiológicos para alterações funcionais corticais em epilepsia.
Resumo:
O ácido γ-aminobutírico (GABA) e o glutamato são, respectivamente, os principais neurotransmissores inibitório e excitatório no Sistema Nervoso Central (SNC) e são fundamentais para o processamento visual. Estudos revelam que o glutamato induz liberação de GABA na retina. Trabalhos prévios também apontam que compostos tióis regulam a liberação de GABA, mas ainda não são totalmente esclarecidos os efeitos de tióis (-SH) sobre os níveis endógenos deste neurotransmissor na retina. Neste intermédio, a glutationa (GSH) além de ser o mais importante dos compostos tióis, vem demonstrando exercer um papel neuromodulador na liberação de neurotransmissores. Desta forma, o objetivo deste trabalho foi avaliar um possível efeito modulador de GSH sobre a liberação de GABA mediada por glutamato em retinas de embrião de galinha. Para isso, utilizamos como modelo experimental tecido retiniano íntegro de embrião de galinha, com sete ou oito dias de desenvolvimento. Nos ensaios de liberação de GABA, as retinas foram tratadas com GSH (100 e 500 μM); glutamato (50 e 500 μM) e Butionina Sulfoximina (BSO), inibidor da síntese de glutationa, (50 μM) por 15 minutos, e os níveis de GABA liberado para o meio extracelular foram quantificados por Cromatografia Líquida de Alta Eficácia (CLAE). Para experimentos de liberação de compostos tióis (–SH), as retinas foram incubadas com glutamato (100 μM) com ou sem Na+ por 15 minutos, e os seus níveis extracelulares foram determinados pela reação com DTNB e quantificados por espectrofotometria (412 nm). Os resultados revelam que o glutamato, assim como GSH, liberam GABA. Nossos dados também demonstram que BSO atenua a liberação de GABA promovida por glutamato. Além disso, demonstramos que glutamato induz liberação de compostos tióis independentemente de sódio. Sendo assim, é sabido que glutamato é capaz de liberar GABA e tióis; dentre estes, GSH é o mais abundante e responsável por também liberar GABA. Sabe-se também que uma vez inibida a síntese de GSH por BSO, a liberação de GABA induzida por glutamato é atenuada. Então, se sugere uma possível modulação de GSH na liberação de GABA induzida por glutamato, em retinas íntegras de embrião de galinha.
Resumo:
The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.
Resumo:
Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.
Resumo:
An exact knowledge of the kinetic nature of the interaction between the stimulatory G protein (G$\sb{\rm s}$) and the adenylyl cyclase catalytic unit (C) is essential for interpreting the effects of Gs mutations and expression levels on cellular response to a wide variety of hormones, drugs, and neurotransmitters. In particular, insight as to the association of these proteins could lead to progress in tumor biology where single spontaneous mutations in G proteins have been associated with the formation of tumors (118). The question this work attempts to answer is whether the adenylyl cyclase activation by epinephrine stimulated $\beta\sb2$-adrenergic receptors occurs via G$\sb{\rm s}$ proteins by a G$\sb{\rm s}$ to C shuttle or G$\sb{\rm s}$-C precoupled mechanism. The two forms of activation are distinguishable by the effect of G$\sb{\rm s}$ levels on epinephrine stimulated EC50 values for cyclase activation.^ We have made stable transfectants of S49 cyc$\sp-$ cells with the gene for the $\alpha$ protein of G$\sb{\rm s}$ $(\alpha\sb{\rm s})$ which is under the control of the mouse mammary tumor virus LTR promoter (110). Expression of G$\sb{\rm s}\alpha$ was then controlled by incubation of the cells for various times with 5 $\mu$M dexamethasone. Expression of G$\sb{\rm s}\alpha$ led to the appearance of GTP shifts in the competitive binding of epinephrine with $\sp{125}$ICYP to the $\beta$-adrenergic receptors and to agonist dependent adenylyl cyclase activity. High expression of G$\sb{\rm s}\alpha$ resulted in lower EC50's for the adenylyl cyclase activity in response to epinephrine than did low expression. By kinetic modelling, this result is consistent with the existence of a shuttle mechanism for adenylyl cyclase activation by hormones.^ One item of concern that remains to be addressed is the extent to which activation of adenylyl cyclase occurs by a "pure" shuttle mechanism. Kinetic and biochemical experiments by other investigators have revealed that adenylyl cyclase activation, by hormones, may occur via a Gs-C precoupled mechanism (80, 94, 97). Activation of adenylyl cyclase, therefore, probably does not occur by either a pure "'Shuttle" or "Gs-C Precoupled" mechanism, but rather by a "Hybrid" mechanism. The extent to which either the shuttle or precoupled mechanism contributes to hormone stimulated adenylyl cyclase activity is the subject of on-going research. ^
Resumo:
The adenosine receptors are members of the G-protein coupled receptor (GPCR) family which represents the largest class of cell-surface proteins mediating cellular communication. As a result, GPCRs are formidable drug targets and it is estimated that approximately 30% of the marketed drugs act through members of this receptor class. There are four known subtypes of adenosine receptors: A1, A2A, A2B and A3. The adenosine A1 receptor, which is the subject of this presentation, mediates the physiological effects of adenosine in various tissues including the brain, heart, kidney and adipocytes. In the brain for instance, its role in epilepsy and ischemia has been the focus of many studies. Previous attempts to study the biosynthesis, trafficking and agonist-induced internalisation of the adenosine A1 receptor in neurons using fluorescent protein-receptor fusion constructs have been hampered by the sheer size of the fluorescent protein (GFP) that ultimately affected the function of the receptor. We have therefore initiated a research programme to develop small molecule fluorescent agonists that selectively activate the adenosine A1 receptor. Our probe design is based on the endogenous ligand adenosine and the known unselective adenosine receptor agonist NECA. We have synthesised a small library of non-fluorescent adenosine derivatives that have different cyclic and bicyclic moieties at the 6 position of the purine ring and have evaluated the pharmacology of these compounds using a yeast-based assay. This analysis revealed compounds with interesting behaviour, i.e. exhibiting subtype-selectivity and biased signalling, that can be potentially used as tool compounds in their own right for cellular studies of the adenosine A1 receptor. Furthermore, we have also linked fluorescent dyes to the purine ring and discovered fluorescent compounds that can activate the adenosine A1 receptor.
Resumo:
ATP and glutamate are fast excitatory neurotransmitters in the central nervous system acting primarily on ionotropic P2X and glutamate [N-methyl-D-aspartate (NMDA) and non-NMDA] receptors, respectively. Both neurotransmitters regulate synaptic plasticity and long-term potentiation in hippocampal neurons. NMDA receptors are responsible primarily for the modulatory action of glutamate, but the mechanism underlying the modulatory effect of ATP remains uncertain. In the present study, the effect of ATP on recombinant NR1a + 2A, NR1a + 2B, and NR1a + 2C NMDA receptors expressed in Xenopus laevis oocytes was investigated. ATP inhibited NR1a + 2A and NR1a + 2B receptor currents evoked by low concentrations of glutamate but potentiated currents evoked by saturating glutamate concentrations. In contrast, ATP potentiated NR1a + 2C receptor currents evoked by nonsaturating glutamate concentrations. ATP shifted the glutamate concentration-response curve to the right, indicating a competitive interaction at the agonist binding site. ATP inhibition and potentiation of glutamate-evoked currents was voltage-independent, indicating that ATP acts outside the membrane electric field. Other nucleotides, including ADP, GTP, CTP, and UTP, inhibited glutamate-evoked currents with different potencies, revealing that the inhibition is dependent on both the phosphate chain and nucleotide ring structure. At high concentrations, glutamate outcompetes ATP at the agonist binding site, revealing a potentiation of the current. This effect must be caused by ATP binding at a separate site, where it acts as a positive allosteric modulator of channel gating. A simple model of the NMDA receptor, with ATP acting both as a competitive antagonist at the glutamate binding site and as a positive allosteric modulator at a separate site, reproduced the main features of the data.
Resumo:
Esta revisión sistemática de la literatura tuvo como objetivo investigar sobre la depresión en personas con epilepsia en la última década (2005-2015), enfocándose en identificar en el paciente con epilepsia: características sociodemográficas, prevalencia de la depresión, tipos de intervención para el manejo de la depresión, factores asociados con la aparición y el mantenimiento de la depresión y por último, identificar las tendencias en investigación en el estudio de la depresión en pacientes con epilepsia. Se revisaron 103 artículos publicados entre 2005 y 2015 en bases de datos especializadas. Los resultados revelaron que la prevalencia de depresión en pacientes con epilepsia es diversa y oscila en un rango amplio entre 3 y 70 %, por otro lado, que las principales características sociodemográficas asociadas a la depresión está el ser mujer, tener un estado civil soltero y tener una edad comprendida entre los 25 y los 45 años. A esto se añade, que los tratamientos conformados por terapia psicológica y fármacos, son la mejor opción para garantizar la eficacia en los resultados del manejo de la depresión en los pacientes con epilepsia. Con respecto a los factores asociados a la aparición de la depresión en pacientes con epilepsia, se identificaron causas tanto neurobiológicas como psicosociales, asimismo los factores principales asociados al mantenimiento fueron una percepción de baja calidad de vida y una baja auto-eficacia. Y finalmente los tipos de investigación más comunes son de tipo aplicado, de carácter descriptivo, transversales y de medición cuantitativa.
Resumo:
The recent developments in neurobiology have rendered new prominence and potential to study about the structure and function of brain and related disorders. Human behaviour is the net result of neural control of the communication between brain cells. Neurotransmitters are chemicals that are used to relay, amplify and modulate electrical signals between neurons and/or another cell. It mediates rapid intercellular communication through the nervous system by interacting with cell surface receptors. These receptors often trigger second messenger signaling pathways that regulate the activity of ion channels. The functional balance of different neurotransmitters such as Acetylcholine (Ach), Dopamine (DA), Serotonin (5-HT), Norepinephrine (NE), Epinephrine (EPI), Glutamate and Gamma amino butyric acid (GABA) regulates the growth, division and other vital functions of a normal cell / organism (Sudha, 1998). Any change in neurotransmitters' functional balance will result in the failure of cell function and may lead to the occurrence of diseases. Abnormalities in the production or functioning of neurotransmitters have been implicated in a number of neurological disorders like Schizophrenia, Alzheimer's, Epilepsy, Depression and Parkinson's disease. Changes in central and peripheral neuronal signaling system is also noted in diabetes, cancer, cell proliferation, alcoholism and aging. Elucidation of neurotransmitters receptor interaction pathways and gene expression regulation by second messengers and transcriptional factors in health and disease conditions can lead to new small molecules for development of therapeutic agents to improve neurological disease conditions. Increased awareness of the global effects of neurological disorders should help health care planners and the neurological community set appropriate priorities in research, prevention, and management of these diseases.
Resumo:
Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy and affects 40% of the patients. Seizures arising from the mesial temporal lobe structures (i.e., amygdala and hippocampus) are common, whereas neocortical seizures are rare. In recent years, many studies aimed to identify the pattern of gene expression of neurotransmitters involved in molecular mechanisms of epilepsy. We used real-time PCR to quantify the expression of GABAA (subunits a1, beta 1, beta 2) and NMDA (subunits NR1, NR2A, and NR2B) receptor genes in amygdalae of 27 patients with TLE and 14 amygdalae from autopsy controls. The NR1 subunit was increased in patients with epilepsy when compared with controls. No differences were found in expression of NMDA subunits NR2A and NR2B or in a1, beta 1, and beta 2 subunits of GABAA receptors. Our results suggest that the NR1 subunit of NMDA receptors is involved in the amygdala hyperexcitability in some of the patients with TLE. (C) 2010 Wiley Periodicals, Inc., Inc.
Resumo:
This study intended to compare the circadian rhythm and circadian profile between patients with juvenile myoclonic epilepsy (JME) and patients with temporal lobe epilepsy (TLE). We enrolled 16 patients with JME and 37 patients with TLE from the Outpatient Clinic of UNICAMP. We applied a questionnaire about sleep-wake cycle and circadian profile. Fourteen (87%) out of 16 patients with JME, and 22 out of 37 (59%) patients with TLE reported that they would sleep after seizure (p < 0.05). Three (19%) patients with JME, and 17 (46%) reported to be in better state before 10:00 AM (p < 0.05). There is no clear distinct profile and circadian pattern in patients with JME in comparison to TLE patients. However, our data suggest that most JME patients do not feel in better shape early in the day.
Resumo:
The aim of this research was to analyze temporal auditory processing and phonological awareness in school-age children with benign childhood epilepsy with centrotemporal spikes (BECTS). Patient group (GI) consisted of 13 children diagnosed with BECTS. Control group (GII) consisted of 17 healthy children. After neurological and peripheral audiological assessment, children underwent a behavioral auditory evaluation and phonological awareness assessment. The procedures applied were: Gaps-in-Noise test (GIN), Duration Pattern test, and Phonological Awareness test (PCF). Results were compared between the groups and a correlation analysis was performed between temporal tasks and phonological awareness performance. GII performed significantly better than the children with BECTS (GI) in both GIN and Duration Pattern test (P < 0.001). GI performed significantly worse in all of the 4 categories of phonological awareness assessed: syllabic (P = 0.001), phonemic (P = 0.006), rhyme (P = 0.015) and alliteration (P = 0.010). Statistical analysis showed a significant positive correlation between the phonological awareness assessment and Duration Pattern test (P < 0.001). From the analysis of the results, it was concluded that children with BECTS may have difficulties in temporal resolution, temporal ordering, and phonological awareness skills. A correlation was observed between auditory temporal processing and phonological awareness in the suited sample.
Resumo:
Objective Patients with mesial temporal lobe epilepsy (MTLE) may present unstable pattern of seizures. We aimed to evaluate the occurrence of relapse-remitting seizures in MTLE with (MTLE-HS) and without (MTLE-NL) hippocampal sclerosis. Method We evaluated 172 patients with MTLE-HS (122) or MTLE-NL (50). Relapse-remitting pattern was defined as periods longer than two years of seizure-freedom intercalated with seizure recurrence. Infrequent seizures was considered as up to three seizures per year and frequent seizures as any period of seizures higher than that. Results Thirty-seven (30%) MTLE-HS and 18 (36%) MTLE-NL patients had relapse-remitting pattern (X2, p = 0.470). This was more common in those with infrequent seizures (X2, p < 0.001). Twelve MTLE-HS and one MTLE-NL patients had prolonged seizure remission between the first and second decade of life (X2, p = 0.06). Conclusion Similar proportion of MTLE-HS or MTLE-NL patients present relapse-remitting seizures and this occurs more often in those with infrequent seizures.
Resumo:
Objective To assess depression and anxiety symptoms of adolescents with epilepsy compared with adolescents without epilepsy. Method The study sample consisted of: case participants (50 subjects) attending the pediatric epilepsy clinic of a tertiary hospital and control participants (51 subjects) from public schools. The instruments utilized were: identification card with demographic and epilepsy data, Beck Depression Inventory and State-Trait Anxiety Inventory. Results No significant differences were founded between the groups regarding scores for depression and anxiety symptoms but both groups presented moderate scores of anxiety. A correlation was found between low scores anxiety and not frequent seizures, low scores anxiety and perception of seizure control, high scores of anxiety and depression and occurrence of seizures in public places. Conclusion Low scores of anxiety are associated with not frequent seizures; high scores of anxiety and depression are associated with occurrence of seizures in public places.
Resumo:
The purpose of this study was to compare the serum levels of androgens between hyposexual and non-hyposexual patients with epilepsy. Adult male patients with epilepsy were investigated. Serum levels of testosterone (T) and free-T, estradiol, and sex hormone binding globulin (SHBG) were measured and the free androgen index (FAI) was calculated. While there were no differences between hyposexual and non-hyposexual patients in the serum levels of T, free-T, and estradiol, or to the FAI, the serum levels of SHBG were significantly higher in hyposexual patients than in non-hyposexual patients. Thus, the effects of increased SHBG upon serum levels of testosterone biologically active in patients with epilepsy and hyposexuality were not detected by the methods used in this study. Four (44%) of nine hyposexual patients who were re-evaluated after two years follow-up improved sexual performance. Thus, clinical treatment that results in good seizure control may improve sexual performance in some patients with epilepsy.