195 resultados para Neuropathology


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have previously shown that antioxidants such as a-phenyl-tert-butyl nitrone or N-acetylcysteine attenuate cortical neuronal injury in infant rats with bacterial meningitis, suggesting that oxidative alterations play an important role in this disease. However, the precise mechanism(s) by which antioxidants inhibit this injury remain(s) unclear. We therefore studied the extent and location of protein oxidation in the brain using various biochemical and immunochemical methods. In cortical parenchyma, a trend for increased protein carbonyls was not evident until 21 hours after infection and the activity of glutamine synthetase (another index of protein oxidation) remained unchanged. Consistent with these results, there was no evidence for oxidative alterations in the cortex by various immunohistochemical methods even in cortical lesions. In contrast, there was a marked increase in carbonyls, 4-hydroxynonenal protein adducts and manganese superoxide dismutase in the cerebral vasculature. Elevated lipid peroxidation was also observed in cerebrospinal fluid and occasionally in the hippocampus. All of these oxidative alterations were inhibited by treatment of infected animals with N-acetylcysteine or alpha-phenyl-tert-butyl nitrone. Because N-acetylcysteine does not readily cross the blood-brain barrier and has no effect on the loss of endogenous brain antioxidants, its neuroprotective effect is likely based on extraparenchymal action such as inhibition of vascular oxidative alterations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have characterized the pattern of brain injury in a rat model of meningitis caused by group B streptococci (GBS). Infant rats (12-14 days old; n = 69) were infected intracisternally with 10 microliters of GBS (log10(2.3) to 4.5 colony-forming units). Twenty hours later, illness was assessed clinically and cerebrospinal fluid was cultured. Animals were either immediately euthanized for brain histopathology or treated with antibiotics and examined later. Early GBS meningitis was characterized clinically by severe obtundation and seizures, and histopathologically by acute inflammation in the subarachnoid space and ventricles, a vasculopathy characterized by vascular engorgement, and neuronal injury that was most prominent in the cortex and often followed a vascular pattern. Incidence of seizures, vasculopathy and neuronal injury correlated with the inoculum size (p < 0.01). Early injury was almost completely prevented by treatment with dexamethasone. Within days after meningitis, injured areas became well demarcated and showed new cellular infiltrates. Thirty days post-infection, brain weights of infected animals treated with antibiotics were decreased compared to uninfected controls (1.39 +/- 0.18 vs 1.64 +/- 0.1 g; p < 0.05). Thus, GBS meningitis in this model caused extensive cortical neuronal injury resembling severe neonatal meningitis in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptide Y (NPY), which is found in high concentrations in several regions of the brain including nuclei of the brain stem and in nerve fibers surrounding cerebral vessels, has been proposed to play a role in regulating cerebral blood flow (CBF) and systemic vegetative functions. Since CBF is altered during meningitis, we examined whether NPY concentrations changed in various regions of the rabbit brain in response to experimental pneumococcal meningitis. Changes were most pronounced in the medulla, where NPY concentration increased threefold after 48 h of infection. Concomitantly, there was an increase in NPY immunoreactive fibers surrounding small vessels in the dorsolateral medulla, especially in the nucleus tractus solitarius. These results suggest that NPY may play a role in inducing some of the hemodynamic changes seen during pneumococcal meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide receptors are often overexpressed in tumors, and they may be targeted in vivo. We evaluated neuropeptide Y (NPY) receptor expression in 131 primary human brain tumors, including gliomas, embryonal tumors, meningiomas, and pituitary adenomas, by in vitro receptor autoradiography using the 125I-labeled NPY receptor ligand peptide YY in competition with NPY receptor subtype-selective analogs. Receptor functionality was investigated in selected cases using [35S]GTPgammaS-binding autoradiography. World Health Organization Grade IV glioblastomas showed a remarkably high expression of the NPY receptor subtype Y2 with respect to both incidence (83%) and density (mean, 4,886 dpm/mg tissue); astrocytomas World Health Organization Grades I to III and oligodendrogliomas also exhibited high Y2 incidences but low Y2 densities. In glioblastomas, Y2 agonists specifically stimulated [35S]GTPgammaS binding, suggesting that tumoral Y2 receptors were functional. Furthermore, nonneoplastic nerve fibers containing NPY peptide were identified in glioblastomas by immunohistochemistry. Medulloblastomas, primitive neuroectodermal tumors of the CNS, and meningiomas expressed Y1 and Y2 receptor subtypes in moderate incidence and density. In conclusion, Y2 receptors in glioblastomas that are activated by NPY originating from intratumoral nerve fibers might mediate functional effects on the tumor cells. Moreover, identification of the high expression of NPY receptors in high-grade gliomas and embryonal brain tumors provides the basis for in vivo targeting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immune cells enter the central nervous system (CNS) from the circulation under normal conditions for immunosurveillance and in inflammatory neurologic diseases. This review describes the distinct anatomic features of the CNS vasculature that permit it to maintain parenchymal homeostasis and which necessitate specific mechanisms for neuroinflammation to occur. We review the historical evolution of the concept of the blood-brain barrier and discuss distinctions between diffusion/transport of solutes and migration of cells from the blood to CNS parenchyma. The former is regulated at the level of capillaries, whereas the latter takes place in postcapillary venules. We summarize evidence that entry of immune cells into the CNS parenchyma in inflammatory conditions involves 2 differently regulated steps: transmigration of the vascular wall into the perivascular space and progression across the glia limitans into the parenchyma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides are intrinsic to the innate immune system in many organ systems, but little is known about their expression in the central nervous system. We examined cerebrospinal fluid (CSF) and serum from patients with active bacterial meningitis to assess antimicrobial peptides and possible bactericidal properties of the CSF. We found antimicrobial peptides (human cathelicidin LL-37) in the CSF of patients with bacterial meningitis but not in control CSF. We next characterized the expression, secretion, and bactericidal properties of rat cathelin-related antimicrobial peptide, the homologue of the human LL-37, in rat astrocytes and microglia after incubation with different bacterial components. Using real-time polymerase chain reaction and Western blotting, we determined that supernatants from both astrocytes and microglia incubated with bacterial component supernatants had antimicrobial activity. The expression of rat cathelin-related antimicrobial peptide in rat glial cells involved different signal transduction pathways and was induced by the inflammatory cytokines interleukin 1beta and tumor necrosis factor. In an experimental model of meningitis, infant rats were intracisternally infected with Streptococcus pneumoniae, and rat cathelin-related antimicrobial peptide was localized in glia, choroid plexus, and ependymal cells by immunohistochemistry. Together, these results suggest that cathelicidins produced by glia and other cells play an important part in the innate immune response against pathogens in central nervous system bacterial infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: A case of Lhermitte-Duclos disease (LDD, dysplastic gangliocytoma) with atypical vascularization is reported. LDD is a rare cerebellar mass lesion which may be associated with Cowden's syndrome and the PTEN germline mutation. CASE MATERIAL: A 61-year-old male presented 15 years before with a transient episode of unspecific gait disturbance. Initial magnetic resonance (MR) imaging revealed a right-sided, diffuse, nonenhancing cerebellar mass lesion. No definitive diagnosis was made at that time, and the symptoms resolved spontaneously. 15 years later, the patient presented with acute onset of vomiting associated with headache and ataxic gait. MR imaging showed a progression of the lesion with occlusive hydrocephalus. The lesion depicted a striated pattern characteristic for LDD with T1-hypointense and T2-hyperintense bands, nonenhancing with contrast. After resection of the mass lesion, the cerebellar and hydrocephalic symptoms improved rapidly. The pathological examination confirmed the diagnosis of dysplastic gangliocytoma (WHO Grade I) with enlarged granular and molecular cell layers, reactive gliosis and dysplastic blood vessels. No other clinical features associated with Cowden's syndrome were present. CONCLUSIONS: This case illustrates that LDD with atypical vascularization is a slow-growing posterior fossa mass lesion which may remain asymptomatic for many years. Timing of surgical treatment and extent of resection in patients with LDD is controversial. The typical features on standard T1-/T2-weighted MR imaging allow a diagnosis without surgery in most cases. The authors believe that the decision to treat in these cases should be based on clinical deterioration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With respect to localization, oligodendrogliomas are characterized by a marked preponderance of the cerebral hemispheres. Outside these typical sites, any tumor histopathologically reminiscent of oligodendroglioma a priori is likely to represent one of its morphological mimics, including clear cell ependymoma, neurocytoma, pilocytic astrocytoma or glioneuronal tumors. This is particularly relevant as several of the latter are in principle curable by surgery. Among extrahemispherical sites, bona fide oligodendroglioma - as characterized by loss of heterozygosity (LOH) of chromosome arms 1p and 19q - so far has not been documented to occur in the brain stem. Here, we report the case of a 55-year-old female patient with an anaplastic oligodendroglioma (WHO grade III) of the brain stem and cerebellum diagnosed by stereotactic biopsy and featuring combined LOH of 1p and 19q. A morphological peculiarity was a population of interspersed tumor giant cells, a phenomenon that has been referred to as polymorphous oligodendroglioma. Our findings confirm the notion that - although very infrequently - true oligodendrogliomas do occur in the infratentorial compartment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rosette-forming glioneuronal tumor (RGNT) is a recently introduced, indolent neoplasm composed of diminutive circular aggregates of neurocytic-like cells on a noninfiltrative astrocytic background, typically located in the cerebellar midline The traded concept of RGNT being derived from site-specific periventricular precursors may be questioned in the face of extracerebellar examples as well as ones occurring in combination with other representatives of the glioneuronal family. We describe a hitherto not documented example of asymptomatic RGNT discovered during autopsy of a 74-year-old male. Located in the tuberal vermis, this lesion of 6 mm diameter consisted of several microscopic nests of what were felt to represent nascent stages of RGNT, all of them centered on the internal granular layer, and ranging from mucoid dehiscences thereof to fully evolved - if small - tumor foci. Molecular genetic analysis revealed a missense mutation in Exon 20 of the PIK3CA gene involving an A→G transition at Nucleotide 3140. On the other hand, neither codeletion of chromosomes 1p/19q nor pathogenic mutations of IDH1/2 were detected. By analogy with in situ paradigms in other organs, we propose that this tumor is likely to have arisen from the internal granular layer, rather than the plate of the 4th ventricle. A suggestive departure from the wholesale argument of "undifferentiated precursors", this finding also indirectly indicates that a subset of non-classical RGNTs - in particular extracerebellar examples, whose origin cannot be mechanistically accounted for by either of the above structures - may possibly reflect an instance of phenotypic convergence, rather than a lineage-restricted entity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myoepithelioma is a dimorphic neoplasm with contractile-epithelial phenotype, originally interpreted as deriving from, but not actually restricted to the salivary glands. As a novel addition to the list of exquisitely rare intracranial salivary gland-type tumors and tumor-like lesions, we report on an example of myoepithelioma encountered in the left cerebellopontine angle of a 32-year-old male. Clinically presenting with ataxia and dizziness, this extraaxial mass of 4 × 3.5 × 3 cm was surgically resected, and the patient is alive 6 years postoperatively. Histologically, the tumor exhibited a continuum ranging from compact fascicles of spindle cells to epithelial nests and trabeculae partitioned by hyalinized septa, while lacking tubular differentiation. Regardless of architectural variations, there was robust immunoexpression of S100 protein, smooth muscle actin, GFAP, cytokeratin, and vimentin. Cytologic atypia tended to be modest throughout, and the MIB1 labeling index averaged less than 1%. Fluorescent in situ hybridization indicated no rearrangement of the EWSR1 locus. We interpret these results to suggest that myoepithelioma of the posterior fossa - along with related salivary epithelial tumors in this ostensibly incongruous locale - may possibly represent analogous neoplasms to their orthotopic counterparts, ones arising within aberrant salivary anlagen. The presence of the latter lends itself to being mechanistically accounted for by either postulating placodal remnants in the wake of branchial arch development, or linking them to exocrine glandular nests within endodermal cysts. Alternatively, myoepithelioma at this site could be regarded as a non tissue-specific lesion similar to its relatives ubiquitously occurring in the soft parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurons of the hippocampal dentate gyrus selectively undergo programmed cell death in patients suffering from bacterial meningitis and in experimental models of pneumococcal meningitis in infant rats. In the present study, a membrane-based organotypic slice culture system of rat hippocampus was used to test whether this selective vulnerability of neurons of the dentate gyrus could be reproduced in vitro. Apoptosis was assessed by nuclear morphology (condensed and fragmented nuclei), by immunochemistry for active caspase-3 and deltaC-APP, and by proteolytic caspase-3 activity. Co-incubation of the cultures with live pneumococci did not induce neuronal apoptosis unless cultures were kept in partially nutrient-deprived medium. Complete nutrient deprivation alone and staurosporine independently induced significant apoptosis, the latter in a dose-response way. In all experimental settings, apoptosis occurred preferentially in the dentate gyrus. Our data demonstrate that factors released by pneumococci per se failed to induce significant apoptosis in vitro. Thus, these factors appear to contribute to a multifactorial pathway, which ultimately leads to neuronal apoptosis in bacterial meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latrepirdine (Dimebon; dimebolin) is a neuroactive compound that was associated with enhanced cognition, neuroprotection and neurogenesis in laboratory animals, and has entered phase II clinical trials for both Alzheimer's disease and Huntington's disease (HD). Based on recent indications that latrepirdine protects cells against cytotoxicity associated with expression of aggregatable neurodegeneration-related proteins, including Aβ42 and γ-synuclein, we sought to determine whether latrepirdine offers protection to Saccharomyces cerevisiae. We utilized separate and parallel expression in yeast of several neurodegeneration-related proteins, including α-synuclein (α-syn), the amyotrophic lateral sclerosis-associated genes TDP43 and FUS, and the HD-associated protein huntingtin with a 103 copy-polyglutamine expansion (HTT gene; htt-103Q). Latrepirdine effects on α-syn clearance and toxicity were also measured following treatment of SH-SY5Y cells or chronic treatment of wild-type mice. Latrepirdine only protected yeast against the cytotoxicity associated with α-syn, and this appeared to occur via induction of autophagy. We further report that latrepirdine stimulated the degradation of α-syn in differentiated SH-SY5Y neurons, and in mouse brain following chronic administration, in parallel with elevation of the levels of markers of autophagic activity. Ongoing experiments will determine the utility of latrepirdine to abrogate α-syn accumulation in transgenic mouse models of α-syn neuropathology. We propose that latrepirdine may represent a novel scaffold for discovery of robust pro-autophagic/anti-neurodegeneration compounds, which might yield clinical benefit for synucleinopathies including Parkinson's disease, Lewy body dementia, rapid eye movement (REM) sleep disorder and/or multiple system atrophy, following optimization of its pro-autophagic and pro-neurogenic activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tick-borne encephalitis virus (TBEV) is the causative agent of human TBE, a severe infection that can cause long-lasting neurologic sequelae. Langat virus (LGTV), which is closely related to TBEV, has a low virulence for human hosts and has been used as a live vaccine against TBEV. Tick-borne encephalitis by natural infection of LGTV in humans has not been described, but one of 18,500 LGTV vaccinees developed encephalitis. The pathogenetic mechanisms of TBEV are poorly understood and, currently, no effective therapy is available. We developed an infant rat model of TBE using LGTV as infective agent. Infant Wistar rats were inoculated intracisternally with 10 focus-forming units of LGTV and assessed for clinical disease and neuropathologic findings at Days 2, 4, 7, and 9 after infection. Infection with LGTV led to gait disturbance, hypokinesia, and reduced weight gain or weight loss. Cerebrospinal fluid concentrations of RANTES, interferon-γ, interferon-β, interleukin-6, and monocyte chemotactic protein-1 were increased in infected animals. The brains of animals with LGTV encephalitis exhibited characteristic perivascular inflammatory cuffs and glial nodules; immunohistochemistry documented the presence of LGTV in the thalamus, hippocampus, midbrain, frontal pole, and cerebellum. Thus, LGTV meningoencephalitis in infant rats mimics important clinical and histopathologic features of human TBE. This new model provides a tool to investigate disease mechanisms and to evaluate new therapeutic strategies against encephalitogenic flaviviruses.