917 resultados para Neuronal Excitability
Resumo:
In many cell types rises in cytosolic calcium, either due to influx from the extracellular space, or by release from an intracellular store activates calcium dependent potassium currents on the plasmalemma. In neurons, these currents are largely activated following calcium influx via voltage gated calcium channels active during the action potentials. Three types of these currents are known: I-c. I-AHP and I-sAHP. These currents can be distinguished by clear differences in their pharmacology and kinetics. Activation of these potassium currents modulates action potential time course and the repetitive firing properties of neurons. Single channel studies have identified two types of calcium-activated potassium channel which can also be separated on biophysical and pharmacological grounds and have been named BK and SK channels. It is now clear that BK channels underlie Ic whereas SK channels underlie I-AHP. The identity of the channels underlying I-sAHP are not known. In this review, we discuss the properties of the different types of calcium-activated potassium channels and the relationship between these channels and the macroscopic currents present in neurons. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Calcium-activated potassium channels are a large family of potassium channels that are found throughout the central nervous system and in many other cell types. These channels are activated by rises in cytosolic calcium largely in response to calcium influx via voltage-gated calcium channels that open during action potentials. Activation of these potassium channels is involved in the control of a number of physiological processes from the firing properties of neurons to the control of transmitter release. These channels form the target for modulation for a range of neurotransmitters and have been implicated in the pathogenesis of neurological and psychiatric disorders. Here the authors summarize the varieties of calcium-activated potassium channels present in central neurons and their defining molecular and biophysical properties.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
We investigated the effects of substance P (SP) and neurokinin A (NKA) infusion and acute stimulation of capsaicin-sensitive sensory nerves fibers (CAP) on lung recruitment of neuronal nitric oxide synthase (nNOS)-positive inflammatory and respiratory sepithelial (RE) cells in guinea-pigs. We evaluated if the effects of CAP stimulation were maintained until 14 days and had functional pulmonary repercussions. After 24 h of CAP and 30 min after SP and NKA infusions there was an increase in nNOS-positive eosinophils and mononuclear cells compared to controls (P < 0.05). SP group presented an increase in nNOS-positive RE (P < 0.05). After 14 days of CAP stimulation, there was a reduction in resistance (R-rs) and elastance (E-rs) of respiratory system in capsaicin pre-treated animals. We noticed a correlation between nNOS-positive eosinophils (R = -0.644, P < 0.05) and mononuclear cells (R = -0.88, P < 0.001) and R-rs. Concluding, CAP and neurokinins increase nNOS expression by inflammatory and RE cells. The increase in nNCS expression induced by low and high doses stimulation of CAP is longstanding and correlated to pulmonary mechanical repercussions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The hallmark of Alzheimer's disease is the cerebral deposition of amyloid which is derived from the amyloid precursor protein (APP). The function of APP is unknown but there is increasing evidence for the role of APP in cell-cell and/or cell-matrix interactions. Primary cultures of murine neurons were treated with antisense oligonucleotides to down-regulate APP. This paper presents evidence that APP mediates a substrate-specific interaction between neurons and extracellular matrix components collagen type I, laminin and heparan sulphate proteoglycan but not fibronectin or poly-L-lysine. It remains to be determined whether this effect is the direct result of APP-matrix interactions, or whether an intermediary pathway is involved. (C) 1997 Elsevier Science B.V.
Resumo:
The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
This paper analyzes the astroglial and neuronal responses in subtelencephalic structures, following a bilateral ablation of the telencephalon in the Columba livia pigeons. Control birds received a sham operation. Four months later the birds were sacrificed and their brains processed for glial fribillary acid protein (GFAP) and neurofilament immunohistochemistry, markers for astrocytes and neurons, respectively. Computer-assisted image analysis was employed for quantification of the immunoreactive labeling in the nucleus rotundus (N.Rt) and the optic tectum (OT) of the birds. An increased number of GFAP immunoreactive astrocytes were found in several subregions of the N.Rt (p .001), as well as in layers 1, 2cd, 3, and 6 of the OT (p .001) of the lesioned animals. Neurofilament immunoreactivity decreased massively in the entire N.Rt of the lesioned birds; however, remaining neurons with healthy aspect showing large cytoplasm and ramified branches were detected mainly in the periphery of the nucleus. In view of the recently described paracrine neurotrophic properties of the activated astrocytes, the data of the present study may suggest a long-lasting neuroglial interaction in regions of the lesioned bird brain far from injury. Such events may trigger neuronal plasticity in remaining brain structures that may lead spontaneous behavior recovery as the one promoted here even after a massive injury.
Resumo:
Early after stroke, there is loss of intracortical facilitation (ICF) and increase in short-interval intracortical inhibition (SICI) in the primary motor cortex (M1) contralateral to a cerebellar infarct. Our goal was to investigate intracortical M1 function in the chronic stage following cerebellar infarcts (> 4 months). We measured resting motor threshold (rMT), SICI, ICF, and ratios between motor-evoked potential amplitudes (MEP) and supramaximal M response amplitudes (MEP/M; %), after transcranial magnetic stimulation was applied to the M1 contralateral (M1(contralesional)) and ipsilateral (M1(ipsilesional)) to the cerebellar infarct in patients and to both M1s of healthy age-matched volunteers. SICI was decreased in M1(contralesional) compared to M1(ipsilesional) in the patient group in the absence of side-to-side differences in controls. There were no significant interhemispheric or between-group differences in rMT, ICF, or MEP/M (%). Our results document disinhibition of M1(contralesional) in the chronic phase after cerebellar stroke.
Resumo:
There remains a lack of solid evidence showing whether transcranial stimulation with weak alternating current (transcranial alternating current stimulation, tACS) can in fact induce significant neurophysiological effects. Previously, a study in which tACS was applied for 2 and 5 min with current density = 0.16-0.25 A/m(2) was unable to show robust effects on cortical excitability. Here we applied tACS at a significantly higher current density (0.80 A/m(2)) for a considerably longer duration (20 min) and were indeed able to demonstrate measurable changes to cortical excitability. Our results show that active 15 Hz tACS of the motor cortex (electrodes placed at C3 and C4) significantly diminished the amplitude of motor evoked potentials and decreased intracortical facilitation (ICF) as compared to baseline and sham stimulation. In addition, we show that our method of sham tACS is a reliable control condition. These results support the notion that AC stimulation with weak currents can induce significant changes in brain excitability; in this case, 15 Hz tACS led to a pattern of inhibition of cortical excitability. We propose that tACS may have a dampening effect on cortical networks and perhaps interfere with the temporal and spatial summation of weak subthreshold electric potentials. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We assessed cortical excitability and intracortical modulation systematically, by transcranial magnetic stimulation (TMS) of the motor cortex, in patients with fibromyalgia. In total 46 female patients with fibromyalgia and 21 normal female subjects, matched for age, were included in this study. TMS was applied to the hand motor area of both hemispheres and motor evoked potentials (MEPs) were recorded for the first interosseous muscle of the contralateral hand. Single-pulse stimulation was used for measurements of the rest motor threshold (RMT) and suprathreshold MEP. Paired-pulse stimulation was used to assess short intracortical inhibition (SICI) and intracortical facilitation (ICF). Putative correlations were sought between changes in electrophysiological parameters and major clinical features of fibromyalgia, such as pain, fatigue, anxiety, depression and catastrophizing. The RMT on both sides was significantly increased in patients with fibromyalgia and suprathreshold MEP was significantly decreased bilaterally. However, these alterations, suggesting a global decrease in corticospinal excitability, were not correlated with clinical features. Patients with fibromyalgia also had lower ICF and SICI on both sides, than controls, these lower values being correlated with fatigue, catastrophizing and depression. These neurophysiological alterations were not linked to medication, as similar changes were observed in patients with or without psychotropic treatment. In conclusion, fibromyalgia is associated with deficits in intracortical modulation involving both GABAergic and glutamatergic mechanisms, possibly related to certain aspects of the pathophysiology of this chronic pain syndrome. Our data add to the growing body of evidence for objective and quantifiable changes in brain function in fibromyalgia. (C) 2010 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism has been proposed as a possible candidate for involvement in the pathophysiology of bipolar disorder ( BD). To determine whether an association exists between the BDNF Val66Met genotype and morphometric abnormalities of the brain regions involved in memory and learning in BD and healthy subjects. Forty-two BD patients and 42 healthy subjects were studied. Interactions between BDNF Val66Met genotype and diagnosis in gray ( GM) volumes were analyzed using an optimized voxel-based morphometry technique. Declarative memory function was assessed with the California Verbal Learning Test II. Left and right anterior cingulate GM volumes showed a significant interaction between genotype and diagnosis such that anterior cingulate GM volumes were significantly smaller in the Val/Met BD patients compared with the Val/Val BD patients (left P = 0.01, right P = 0.01). Within-group comparisons revealed that the Val/Met carriers showed smaller GM volumes of the dorsolateral prefrontal cortex compared with the Val/Val subjects within the BD patient (P = 0.01) and healthy groups (left P = 0.03, right P = 0.03). The Val/Met healthy subjects had smaller GM volumes of the left hippocampus compared with the Val/Val healthy subjects (P<0.01). There was a significant main effect of diagnosis on memory function (P = 0.04), but no interaction between diagnosis and genotype was found (P = 0.48). The findings support an association between the BDNF Val66Met genotype and differential gray matter content in brain structures, and suggest that the variation in this gene may play a more prominent role in brain structure differences in subjects affected with BD. Neuropsychopharmacology (2009) 34, 1904-1913; doi: 10.1038/npp.2009.23; published online 18 March 2009
Resumo:
The human brain is often considered to be the most cognitively capable among mammalian brains and to be much larger than expected for a mammal of our body size. Although the number of neurons is generally assumed to be a determinant of computational power, and despite the widespread quotes that the human brain contains 100 billion neurons and ten times more glial cells, the absolute number of neurons and glial cells in the human brain remains unknown. Here we determine these numbers by using the isotropic fractionator and compare them with the expected values for a human-sized primate. We find that the adult male human brain contains on average 86.1 +/- 8.1 billion NeuN-positive cells (""neurons"") and 84.6 +/- 9.8 billion NeuN-negative (""nonneuronal"") cells. With only 19% of all neurons located in the cerebral cortex, greater cortical size (representing 82% of total brain mass) in humans compared with other primates does not reflect an increased relative number of cortical neurons. The ratios between glial cells and neurons in the human brain structures are similar to those found in other primates, and their numbers of cells match those expected for a primate of human proportions. These findings challenge the common view that humans stand out from other primates in their brain composition and indicate that, with regard to numbers of neuronal and nonneuronal cells, the human brain is an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532-541, 2009. (c) 2009 Wiley-Liss, Inc.