904 resultados para Network analysis (Planning)
Resumo:
Still a big gap exists between clinical and genetic diagnosis of dyslipidemic disorders. Almost the 60% of the patients with a clinical diagnosis of Familial hypercholesterolemia (FH) still lack of a genetic diagnosis. Here we present the preliminary results of an integrative approach intended to identify new candidate genes and to dissect pathways that can be dysregulated in the disease. Interesting hits will be subsequently knocked down in vitro in order to evaluate their functional role in the uptake of fluorescently-labeled LDL and free cell cholesterol using automated microscopy.
Resumo:
Frame. Assessing the difficulty of source texts and parts thereof is important in CTIS, whether for research comparability, for didactic purposes or setting price differences in the market. In order to empirically measure it, Campbell & Hale (1999) and Campbell (2000) developed the Choice Network Analysis (CNA) framework. Basically, the CNA’s main hypothesis is that the more translation options (a group of) translators have to render a given source text stretch, the higher the difficulty of that text stretch will be. We will call this the CNA hypothesis. In a nutshell, this research project puts the CNA hypothesis to the test and studies whether it does actually measure difficulty. Data collection. Two groups of participants (n=29) of different profiles and from two universities in different countries had three translation tasks keylogged with Inputlog, and filled pre- and post-translation questionnaires. Participants translated from English (L2) into their L1s (Spanish or Italian), and worked—first in class and then at home—using their own computers, on texts ca. 800–1000 words long. Each text was translated in approximately equal halves in two 1-hour sessions, in three consecutive weeks. Only the parts translated at home were considered in the study. Results. A very different picture emerged from data than that which the CNA hypothesis might predict: there was no prevalence of disfluent task segments when there were many translation options, nor was a prevalence of fluent task segments associated to fewer translation options. Indeed, there was no correlation between the number of translation options (many and few) and behavioral fluency. Additionally, there was no correlation between pauses and both behavioral fluency and typing speed. The discussed theoretical flaws and the empirical evidence lead to the conclusion that the CNA framework does not and cannot measure text and translation difficulty.
Resumo:
In recent decades, two prominent trends have influenced the data modeling field, namely network analysis and machine learning. This thesis explores the practical applications of these techniques within the domain of drug research, unveiling their multifaceted potential for advancing our comprehension of complex biological systems. The research undertaken during this PhD program is situated at the intersection of network theory, computational methods, and drug research. Across six projects presented herein, there is a gradual increase in model complexity. These projects traverse a diverse range of topics, with a specific emphasis on drug repurposing and safety in the context of neurological diseases. The aim of these projects is to leverage existing biomedical knowledge to develop innovative approaches that bolster drug research. The investigations have produced practical solutions, not only providing insights into the intricacies of biological systems, but also allowing the creation of valuable tools for their analysis. In short, the achievements are: • A novel computational algorithm to identify adverse events specific to fixed-dose drug combinations. • A web application that tracks the clinical drug research response to SARS-CoV-2. • A Python package for differential gene expression analysis and the identification of key regulatory "switch genes". • The identification of pivotal events causing drug-induced impulse control disorders linked to specific medications. • An automated pipeline for discovering potential drug repurposing opportunities. • The creation of a comprehensive knowledge graph and development of a graph machine learning model for predictions. Collectively, these projects illustrate diverse applications of data science and network-based methodologies, highlighting the profound impact they can have in supporting drug research activities.
Resumo:
Detecció del tipus de protocols que tenim en la nostra xarxa per així poder fer un anàlisis i estudiar les possiblesanomalies que pugui patir la xarxa.
Resumo:
Description based on: FY 09 report ; title from cover.
Resumo:
Mode of access: Internet.
Resumo:
Supply chains have become an important focus for competitive advantage. The performance of a company increasingly depends on its ability to maintain effective and efficient relationships with its suppliers and customers. The extended enterprise (i.e. composed of several partners) needs to be dynamically formed in order to be agile and adaptable. According to the Digital Manufacturing paradigm, companies have to be able to quickly share and disseminate information regarding planning, designing and manufacturing of products. Additionally, they must be responsive to all technical and business determinants, as well as be assessed and certified for guaranteed performance. The current research intends to present a solution for the dynamic composition of the extended enterprise, formed to take advantage of market opportunities quickly and efficiently. A construction model was developed. This construction model consists of: information model, protocol model and process model. The information model has been defined based on the concepts of Supply Chain Operations Reference model (SCOR®). In this model is defined information for negotiating the participation of candidate companies in the dynamic establishment of a network for responding to a given demand for developing and manufacturing products, in seven steps as follows: request for information; request for qualification; alignment of strategy; request for proposal; request for quotation; compatibility of process; and compatibility of system. The protocol model has been elaborated and inspired in the OSI, this model provides a framework for linking customers and suppliers, indicates a sequence to be followed, in order to selecte companies to become suppliers. The process model has been implemented by means of process modeling according to the BPMN standard and, in turn, implemented as a web-based application that runs the process through its several steps, which uses forms to gather data. An application example in the context of the oil and gas industry is used for demonstrating the solution concept.
Resumo:
This paper aims to cast some light on the dynamics of knowledge networks in developing countries by analyzing the scientific production of the largest university in the Northeast of Brazil and its influence on some of the remaining regional research institutions in the state of Bahia. Using a methodology test to be employed in a larger project, the Universidade Federal da Bahia (UFBA) (Federal University of Bahia), the Universidade do Estado da Bahia (Uneb) (State of Bahia University) and the Universidade Estadual de Santa Cruz (Uesc)'s (Santa Cruz State University) scientific productions are discussed in one of their most traditionally expressive sectors in academic production - namely, the field of chemistry, using social network analysis of co-authorship networks to investigate the existence of small world phenomena and the importance of these phenomena in research performance in these three universities. The results already obtained through this research bring to light data of considerable interest concerning the scientific production in unconsolidated research universities. It shows the important participation of the UFBA network in the composition of the other two public universities research networks, indicating a possible occurrence of small world phenomena in the UFBA and Uesc networks, as well as the importance of individual researchers in consolidating research networks in peripheral universities. The article also hints that the methodology employed appears to be adequate insofar as scientific production may be used as a proxy for scientific knowledge.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
The adoption of a proper traceability system is being incorporated into meat production practices as a method of gaining consumer confidence. The various partners operating in the chain of meat production can be considered a social network, and they have the common goal of generating a communication process that can ensure each characteristic of the product, including safety. This study aimed to select the most appropriate meat traceability system “from farm to fork” that could be applied to Brazilian beef and pork production for international trade. The research was done in three steps. The first used the analytical hierarchy process (AHP) for selecting the best on-farm livestock traceability. In the second step, the actors in the meat production chain were identified to build a framework and defined each role in the network. In the third step, the selection of the traceability system was done. Results indicated that with an electronic traceability system, it is possible to acquire better connections between the links in the chain and to provide the means for managing uncertainties by creating structures that facilitate information flow more efficiently.
Resumo:
Computational Biology is the research are that contributes to the analysis of biological data through the development of algorithms which will address significant research problems.The data from molecular biology includes DNA,RNA ,Protein and Gene expression data.Gene Expression Data provides the expression level of genes under different conditions.Gene expression is the process of transcribing the DNA sequence of a gene into mRNA sequences which in turn are later translated into proteins.The number of copies of mRNA produced is called the expression level of a gene.Gene expression data is organized in the form of a matrix. Rows in the matrix represent genes and columns in the matrix represent experimental conditions.Experimental conditions can be different tissue types or time points.Entries in the gene expression matrix are real values.Through the analysis of gene expression data it is possible to determine the behavioral patterns of genes such as similarity of their behavior,nature of their interaction,their respective contribution to the same pathways and so on. Similar expression patterns are exhibited by the genes participating in the same biological process.These patterns have immense relevance and application in bioinformatics and clinical research.Theses patterns are used in the medical domain for aid in more accurate diagnosis,prognosis,treatment planning.drug discovery and protein network analysis.To identify various patterns from gene expression data,data mining techniques are essential.Clustering is an important data mining technique for the analysis of gene expression data.To overcome the problems associated with clustering,biclustering is introduced.Biclustering refers to simultaneous clustering of both rows and columns of a data matrix. Clustering is a global whereas biclustering is a local model.Discovering local expression patterns is essential for identfying many genetic pathways that are not apparent otherwise.It is therefore necessary to move beyond the clustering paradigm towards developing approaches which are capable of discovering local patterns in gene expression data.A biclusters is a submatrix of the gene expression data matrix.The rows and columns in the submatrix need not be contiguous as in the gene expression data matrix.Biclusters are not disjoint.Computation of biclusters is costly because one will have to consider all the combinations of columans and rows in order to find out all the biclusters.The search space for the biclustering problem is 2 m+n where m and n are the number of genes and conditions respectively.Usually m+n is more than 3000.The biclustering problem is NP-hard.Biclustering is a powerful analytical tool for the biologist.The research reported in this thesis addresses the problem of biclustering.Ten algorithms are developed for the identification of coherent biclusters from gene expression data.All these algorithms are making use of a measure called mean squared residue to search for biclusters.The objective here is to identify the biclusters of maximum size with the mean squared residue lower than a given threshold. All these algorithms begin the search from tightly coregulated submatrices called the seeds.These seeds are generated by K-Means clustering algorithm.The algorithms developed can be classified as constraint based,greedy and metaheuristic.Constarint based algorithms uses one or more of the various constaints namely the MSR threshold and the MSR difference threshold.The greedy approach makes a locally optimal choice at each stage with the objective of finding the global optimum.In metaheuristic approaches particle Swarm Optimization(PSO) and variants of Greedy Randomized Adaptive Search Procedure(GRASP) are used for the identification of biclusters.These algorithms are implemented on the Yeast and Lymphoma datasets.Biologically relevant and statistically significant biclusters are identified by all these algorithms which are validated by Gene Ontology database.All these algorithms are compared with some other biclustering algorithms.Algorithms developed in this work overcome some of the problems associated with the already existing algorithms.With the help of some of the algorithms which are developed in this work biclusters with very high row variance,which is higher than the row variance of any other algorithm using mean squared residue, are identified from both Yeast and Lymphoma data sets.Such biclusters which make significant change in the expression level are highly relevant biologically.
Resumo:
Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components