992 resultados para Negative ions
Resumo:
Ions play an important role in affecting climate and particle formation in the atmosphere. Small ions rapidly attach to particles in the air and, therefore, studies have shown that they are suppressed in polluted environments. Urban environments, in particular, are dominated by motor vehicle emissions and, since motor vehicles are a source of both particles and small ions, the relationship between these two parameters is not well known. In order to gain a better understanding of this relationship, an intensive campaign was undertaken where particles and small ions of both signs were monitored over two week periods at each of three sites A, B and C that were affected to varying degrees by vehicle emissions. Site A was close to a major road and reported the highest particle number and lowest small ion concentrations. Precursors from motor vehicle emissions gave rise to clear particle formation events on five days and, on each day this was accompanied by a suppression of small ions. Observations at Site B, which was located within the urban airshed, though not adjacent to motor traffic, showed particle enhancement but no formation events. Site C was a clean site, away from urban sources. This site reported the lowest particle number and highest small ion concentration. The positive small ion concentration was 10% to 40% higher than the corresponding negative value at all sites. These results confirm previous findings that there is a clear inverse relationship between small ions and particles in urban environments dominated by motor vehicle emissions.
Resumo:
Fatty acids are long-chain carboxylic acids that readily produce \[M - H](-) ions upon negative ion electrospray ionization (ESI) and cationic complexes with alkali, alkaline earth, and transition metals in positive ion ESI. In contrast, only one anionic monomeric fatty acid-metal ion complex has been reported in the literature, namely \[M - 2H + (FeCl)-Cl-II](-). In this manuscript, we present two methods to form anionic unsaturated fatty acid-sodium ion complexes (i.e., \[M - 2H + Na](-)). We find that these ions may be generated efficiently by two distinct methods: (1) negative ion ESI of a methanolic solution containing the fatty acid and sodium fluoride forming an \[M - H + NaF](-) ion. Subsequent collision-induced dissociation (CID) results in the desired \[M - 2H + Na](-) ion via the neutral loss of HF. (2) Direct formation of the \[M - 2H + Na](-) ion by negative ion ESI of a methanolic solution containing the fatty acid and sodium hydroxide or bicarbonate. In addition to deprotonation of the carboxylic acid moiety, formation of \[M - 2H + Na](-) ions requires the removal of a proton from the fatty acid acyl chain. We propose that this deprotonation occurs at the bis-allylic position(s) of polyunsaturated fatty acids resulting in the formation of a resonance-stabilized carbanion. This proposal is supported by ab initio calculations, which reveal that removal of a proton from the bis-allylic position, followed by neutral loss of HX (where X = F- and -OH), is the lowest energy dissociation pathway.
Resumo:
Previous studies showed that a significant number of the particles present in indoor air are generated by cooking activities, and measured particle concentrations and exposures have been used to estimate the related human dose. The dose evaluation can be affected by the particle charge level which is usually not considered in particle deposition models. To this purpose, in this paper we show, for the very first time, the electric charge of particles generated during cooking activities and thus extending the interest on particle charging characterization to indoor micro-environments, so far essentially focused on outdoors. Particle number, together with positive and negative cluster ion concentrations, was monitored using a condensation particle counter and two air ion counters, respectively, during different cooking events. Positively-charged particle distribution fractions during gas combustion, bacon grilling, and eggplant grilling events were measured by two Scanning Mobility Particle Sizer spectrometers, used with and without a neutralizer. Finally, a Tandem Differential Mobility Analyzer was used to measure the charge specific particle distributions of bacon and eggplant grilling experiments, selecting particles of 30, 50, 80 and 100 nm in mobility diameter. The total fraction of positively-charged particles was 4.0%, 7.9%, and 5.6% for gas combustion, bacon grilling, and eggplant grilling events, respectively, then lower than other typical outdoor combustion-generated particles.
Resumo:
It is a well know that electrons and positive ions are responsible in the case of electric spark. Investigation have been undertaken in the high voltage laboratory to study the effect of injecting ions (both possitive and negative)into the spark gap.Also the effect of paper screens in blocking the ions being invetsigated.
Resumo:
The lithium-ion exchange rate capability of various commercial graphite materials are evaluated using galvanostatic charge/discharge cycling in a half-cell configuration over a wide range of C-rates (0.1 similar to 60C). The results confirm that graphite is capable of de-intercalating stored charge at high rates, but has a poor intercalating rate capability. Decreasing the graphite coating thickness leads to a limited rate performance improvement of the electrode. Reducing the graphite particle size shows enhanced C-rate capability but with increased irreversible capacity loss (ICL). It is demonstrated that the rate of intercalation of lithium-ions into the graphite is significantly limited compared with the corresponding rate of de-intercalation at high C-rates. For the successful utilisation of commercially available conventional graphite as a negative electrode in a lithium-ion capacitor (LIC), its intercalation rate capability needs to be improved or oversized to accommodate high charge rates.
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.
Resumo:
Thiobacillus ferrooxidans MAL4-1, an isolate from Malanjkhand copper mines, India, was adapted to grow in the presence of high concentration (30 gL(-1)) of Cu2+, resulting in a 15-fold increase in its tolerance to Cu2+. While wild-type T. ferrooxidans MAL4-1 contained multiple plasmids, cultures adapted to Cu2+ concentrations of 20 gL(-1) or more showed a drastic reduction in the copy number of the plasmids. The reduction for three of the plasmids was estimated to be over 50-fold. Examination of the plasmid profiles of the strains adapted to high concentration of SO42- anion (as Na2SO4 or ZnSO4) indicated that the reduction in plasmid copy number is not owing to SO42- anion, but is specific for Cu2+. The effect of mercury on the plasmids was similar to that of copper. Deadaptation of the Cu2+- Or Hg2+-adapted T. ferrooxidans resulted in restoration of the plasmids to the original level within the first passage. The fact that the plasmid copy number, in general, is drastically reduced in Cu2+-adapted T. ferrooxidans suggests that resistance to copper is chromosome mediated. This is the first report of a selective negative influence of copper ions on the copy number of plasmids in T. ferrooxidans.
Resumo:
Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.
Resumo:
The photocatalytic antibacterial activity of Ag impregnated combustion synthesized TiO(2) (0.25 g/L) was studied against Escherichia coil in presence of UV irradiation. The effect of various parameters, such as anions, canons, hydrogen peroxide and pH, on the photocatalytic inactivation was investigated. The addition of inorganic ions showed a negative effect on inactivation. Among anions, the presence of chloride ions was observed to have a maximum negative effect and reduced the inactivation considerably. Among cations, the bacterial inactivation reduced significantly in the presence of Ca(2+) ions. Hydrogen peroxide addition in combination with Ag/TiO(2) photocatalysis, however, improved the inactivation. Photocatalysis with high concentration of H(2)O(2) yielded complete bacterial inactivation within few minutes. The photocatalytic inactivation of E. coil was not affected by variation in pH. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A soluble-lead redox flow battery with corrugated-graphite sheet and reticulated-vitreous carbon as positive and negative current collectors is assembled and performance tested. In the cell, electrolyte comprising of 1 center dot 5 M lead (II) methanesulfonate and 0 center dot 9 M methanesulfonic acid with sodium salt of lignosulfonic acid as additive is circulated through the reaction chamber at a flow rate of 50 ml min (-aEuro parts per thousand 1). During the charge cycle, pure lead (Pb) and lead dioxide (PbO2) from the soluble lead (II) species are electrodeposited onto the surface of the negative and positive current collectors, respectively. Both the electrodeposited materials are characterized by XRD, XPS and SEM. Phase purity of synthesized lead (II) methanesulfonate is unequivocally established by single crystal X-ray diffraction followed by profile refinements using high resolution powder data. During the discharge cycle, electrodeposited Pb and PbO2 are dissolved back into the electrolyte. Since lead ions are produced during oxidation and reduction at the negative and positive plates, respectively there is no risk of crossover during discharge cycle, preventing the possibility of lowering the overall efficiency of the cell. As the cell employs a common electrolyte, the need of employing a membrane is averted. It has been possible to achieve a capacity value of 114 mAh g (-aEuro parts per thousand 1) at a load current-density of 20 mA cm (-aEuro parts per thousand 2) with the cell at a faradaic efficiency of 95%. The cell is tested for 200 cycles with little loss in its capacity and efficiency.
Resumo:
Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.
In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.
Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.
Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.
Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.
Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.
The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.
Resumo:
Highly uniform and well-dispersed CeO2 and CeO2:Eu3+ (Sm3+, Tb3+) nanocrystals were prepared by a nonhydrolytic solution route and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV/vis absorption, and photoluminescence (PL) spectra, respectively. The result of XRD indicates that the CeO2 nanocrystals are well crystallized with a cubic structure. The TEM images illustrate that the average size of CeO2 nanocrystals is about 3.5 nm in diameter. The absorption spectrum of CeO2:Eu3+ nanocrystals exhibits red-shifting with respect to that of the undoped CeO2 nanocrystals. Under the excitation of 440 nm (or 426 nm) light, the colloidal solution of the undoped CeO2 nanocrystals shows a very weak emission band with a maximum at 501 nm, which is remarkably enhanced by doping additional lanthanide ions (Eu3+, Tb3+, Sm3+) in the CeO2 nanocrystals. The emission band is not due to the characteristic emission of the lanthanide ions but might arise from the oxygen vacancy which is introduced in the fluorite lattice of the CeO2 nanocrystals to compensate the effective negative charge associated with the trivalent ions.
Resumo:
Doubly charged cluster ions, besides singly charged cluster ions, from sodium and potassium nitrates were produced evidently under normal source capillary temperature of 200 degrees C in both positive and negative ion electrospray ionization (ESI) ion trap mass spectrometry. The fragmentation pathways for doubly charged cluster ions were studied in detail using ESI tandem mass spectrometry and two pathways were observed depending on the cluster sizes of alkali metal nitrates. In addition, factors that affect the formation of cluster ions were also interrogated.
Resumo:
High-resolution Sustained off resonance irradiation (SORI) CID was employed to distinguish four pairs of isomeric diglycosyl flavonoids in the negative mode using the electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR MS). All of these isomers can be distinguished via MS/MS data. For these diglycosyl flavones and flavanones, the deprotonated alpha 1-->6 linkage diglycosyl flavonoids produce fewer fragments than the alpha 1-->2 linkage type compounds and the Retro-Diels-Alder (RDA) reaction in MS/MS only takes place when the aglycone is a flavanone and glycosylated with an alpha 1-->2 intersaccharide linkage disaccharide. The deprotonation sites after collisional activation are discussed according to the high mass accuracy and high-resolution data of tandem spectrometry. Some of these high-resolution SORI CID product ions from alpha 1-->2 linkage diglycosyl flavonoids involve multibond cleavages; the possible mechanism is discussed based on the computer modeling using Gaussian 03 program package at the B3LYP/6-31G level of theory. Unambiguous elementary composition data provides fragmentation information that has not been reported previously.
Resumo:
When alkaline earth ions in borates, phosphates or borophosphates [SrB4O7, SrB6O10, BaB8O13, MBPO5 (M=Ca,Sr)] are substituted partially and aliovalently by trivalent rare earth ions such as Sm3+, Eu3+, these rare earth ions can be reduced to divalent state by the produced negative charge vacancy V-M". The matrices must have appropriate structure containing a rigid three-dimensional network of tetragonal AO(4) groups (A=B,P). These groups can surround and isolate the produced divalent RE2+ ions from the reaction with oxygen. Therefore, this reduction reaction can be carried out even in air at high temperature. The produced divalent rare earth ions can be detected by luminescence and XANES methods and their spectroscopic properties are discussed.