978 resultados para Nebuchadnezzar II, King of Babylonia, d. 562 B.C.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a measurement of the Lambda(0)(b) lifetime using a sample corresponding to 1.3 fb(-1) of data collected by the D0 experiment in 2002-2006 during run II of the Fermilab Tevatron collider. The Lambda(0)(b) baryon is reconstructed via the decay Lambda(0)(b)->mu(nu) over bar Lambda X-+(c). Using 4437 +/- 329 signal candidates, we measure the Lambda(0)(b) lifetime to be tau(Lambda(0)(b))=1.290(-0.110)(+0.119)(stat)(-0.091)(+0.087)(syst) ps, which is among the most precise measurements in semileptonic Lambda(0)(b) decays. This result is in good agreement with the world average value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been shown that ouabain (OUA) can activate the Na,K-ATPase complex and mediate intracellular signaling in the central nervous system (CNS). Inflammatory stimulus increases glutamatergic transmission, especially at N-methyl-D-aspartate (NMDA) receptors, which are usually coupled to the activation of nitric oxide synthase (NOS). Nuclear factor-kappa B (NF-kappa B) activation modulates the expression of genes involved in development, plasticity, and inflammation. The present work investigated the effects of OUA on NF-kappa B binding activity in rat hippocampus and the influence of this OUA-Na,K-ATPase signaling cascade in NMDA-mediated NF-kappa B activation. The findings presented here are the first report indicating that intrahippocampal administration of OUA, in a concentration that did not alter Na,K-ATPase or NOS activity, induced an activation of NF-kappa B, leading to increases in brain-derived neurotrophic factor (Bdnf), inducible NOS (iNos), tumor necrosis factor-alpha (Tnf-alpha), and B-cell leukemia/lymphoma 2 (Bcl2) mRNA levels. This response was not linked to any significant signs of neurodegeneration as showed via Fluoro-Jade B and Nissl stain. Intrahippocampal administration of NMDA induced NF alpha B activation and increased NOS and alpha 2/3-Na,K-ATPase activities. NMDA treatment further increased OUA-induced NF-kappa B activation, which was partially blocked by MK-801, an antagonist of NMDA receptor. These results suggest that OUA-induced NF-kappa B activation is at least in part dependent on Na,K-ATPase modulatory action of NMDA receptor in hippocampus. The interaction of these signaling pathways could be associated with biological mechanisms that may underlie the basal homeostatic state linked to the inflammatory signaling cascade in the brain. (c) 2011 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with brain metastases (BM) rarely survive longer than 6months and are commonly excluded from clinical trials. We explored two combined modality regimens with novel agents with single agent activity and radiosensitizing properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: To determine the activity and tolerability of adding cetuximab to the oxaliplatin and capecitabine (XELOX) combination in first-line treatment of metastatic colorectal cancer (MCC). PATIENTS AND METHODS: In a multicenter two-arm phase II trial, patients were randomized to receive oxaliplatin 130 mg/m(2) on day 1 and capecitabine 1000 mg/m(2) twice daily on days 1-14 every 3 weeks alone or in combination with standard dose cetuximab. Treatment was limited to a maximum of six cycles. RESULTS: Seventy-four patients with good performance status entered the trial. Objective partial response rates after external review and radiological confirmation were 14% and 41% in the XELOX and in the XELOX + Cetuximab arm, respectively. Stable disease has been observed in 62% and 35% of the patients, with 76% disease control in both arms. Cetuximab led to skin rash in 65% of the patients. The median overall survival was 16.5 months for arm A and 20.5 months for arm B. The median time to progression was 5.8 months for arm A and 7.2 months for arm B. CONCLUSION: Differences in response rates between the treatment arms indicate that cetuximab may improve outcome with XELOX. The correct place of the cetuximab, oxaliplatin and fluoropyrimidine combinations in first-line treatment of MCC has to be assessed in phase III trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: This multicenter phase II study investigated the efficacy and feasibility of preoperative induction chemotherapy followed by chemoradiation and surgery in patients with esophageal carcinoma. PATIENTS AND METHODS: Patients with locally advanced resectable squamous cell carcinoma or adenocarcinoma of the esophagus received induction chemotherapy with cisplatin 75 mg/m(2) and docetaxel (Taxotere) 75 mg/m(2) on days 1 and 22, followed by radiotherapy of 45 Gy (25 x 1.8 Gy) and concurrent chemotherapy comprising cisplatin 25 mg/m(2) and docetaxel 20 mg/m(2) weekly for 5 weeks, followed by surgery. RESULTS: Sixty-six patients were enrolled at eleven centers and 57 underwent surgery. R0 resection was achieved in 52 patients. Fifteen patients showed complete, 16 patients nearly complete and 26 patients poor pathological remission. Median overall survival was 36.5 months and median event-free survival was 22.8 months. Squamous cell carcinoma and good pathologically documented response were associated with longer survival. Eighty-two percent of all included patients completed neoadjuvant therapy and survived for 30 days after surgery. Dysphagia and mucositis grade 3/4 were infrequent (<9%) during chemoradiation. Five patients (9%) died due to surgical complications. CONCLUSIONS: This neoadjuvant, taxane-containing regimen was efficacious and feasible in patients with locally advanced esophageal cancer in a multicenter, community-based setting and represents a suitable backbone for further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory is a hallmark of immunity. Memory carried by antibodies is largely responsible for protection against reinfection with most known acutely lethal infectious agents and is the basis for most clinically successful vaccines. However, the nature of long-term B cell and antibody memory is still unclear. B cell memory was studied here after infection of mice with the rabies-like cytopathic vesicular stomatitis virus, the noncytopathic lymphocytic choriomeningitis virus (Armstrong and WE), and after immunization with various inert viral antigens inducing naive B cells to differentiate either to plasma cells or memory B cells in germinal centers of secondary lymphoid organs. The results show that in contrast to very low background levels against internal viral antigens, no significant neutralizing antibody memory was observed in the absence of antigen and suggest that memory B cells (i) are long-lived in the absence of antigen, nondividing, and relatively resistant to irradiation, and (ii) must be stimulated by antigen to differentiate to short-lived antibody-secreting plasma cells, a process that is also efficient in the bone marrow and always depends on radiosensitive, specific T help. Therefore, for vaccines to induce long-term protective antibody titers, they need to repeatedly provide, or continuously maintain, antigen in minimal quantities over a prolonged time period in secondary lymphoid organs or the bone marrow for sufficient numbers of long-lived memory B cells to mature to short-lived plasma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In early seedling development, far-red-light-induced deetiolation is mediated primarily by phytochrome A (phyA), whereas red-light-induced deetiolation is mediated primarily by phytochrome B (phyB). To map the molecular determinants responsible for this photosensory specificity, we tested the activities of two reciprocal phyA/phyB chimeras in diagnostic light regimes using overexpression in transgenic Arabidopsis. Although previous data have shown that the NH2-terminal halves of phyA and phyB each separately lack normal activity, fusion of the NH2-terminal half of phyA to the COOH-terminal half of phyB (phyAB) and the reciprocal fusion (phyBA) resulted in biologically active phytochromes. The behavior of these two chimeras in red and far-red light indicates: (i) that the NH2-terminal halves of phyA and phyB determine their respective photosensory specificities; (ii) that the COOH-terminal halves of the two photoreceptors are necessary for regulatory activity but are reciprocally inter-changeable and thus carry functionally equivalent determinants; and (iii) that the NH2-terminal halves of phyA and phyB carry determinants that direct the differential light lability of the two molecules. The present findings suggest that the contrasting photosensory information gathered by phyA and phyB through their NH2-terminal halves may be transduced to downstream signaling components through a common biochemical mechanism involving the regulatory activity of the COOH-terminal domains of the photoreceptors.