932 resultados para Nearly zero energy buildings


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The past decade has witnessed a sharp increase in published research on energy and buildings. This paper takes stock of work in this area, with a particular focus on construction research and the analysis of non-technical dimensions. While there is widespread recognition as to the importance of non-technical dimensions, research tends to be limited to individualistic studies of occupants and occupant behavior. In contrast, publications in the mainstream social science literature display a broader range of interests, including policy developments, structural constraints on the diffusion and use of new technologies and the construction process itself. The growing interest of more generalist scholars in energy and buildings provides an opportunity for construction research to engage a wider audience. This would enrich the current research agenda, helping to address unanswered problems concerning the relatively weak impact of policy mechanisms and new technologies and the seeming recalcitrance of occupants. It would also help to promote the academic status of construction research as a field. This, in turn, depends on greater engagement with interpretivist types of analysis and theory building, thereby challenging deeply ingrained views on the nature and role of academic research in construction.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Taking a perspective from a whole building lifecycle, occupier's actions could account for about 50% of energy. However occupants' activities influence building energy performance is still a blind area. Building energy performance is thought to be the result of a combination of building fabrics, building services and occupants' activities, along with their interactions. In this sense, energy consumption in built environment is regarded as a socio-technical system. In order to understand how such a system works, a range of physical, technical and social information is involved that needs to be integrated and aligned. This paper has proposed a semiotic framework to add value for Building Information Modelling, incorporating energy-related occupancy factors in a context of office buildings. Further, building information has been addressed semantically to describe a building space from the facility management perspective. Finally, the framework guides to set up building information representation system, which can help facility managers to manage buildings efficiently by improving their understanding on how office buildings are operated and used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Building designs regularly fail to achieve the anticipated levels of in-use energy consumption. The interaction of occupants with building controls is often cited as a key factor behind this discrepancy. This paper examines whether one factor in inadvertent energy consumption might be the appearance of post-completion errors (when an intended action is not taken because a primary goal has already been accomplished) in occupantsâ interactions with building controls. Post-completion errors have been widely studied in human-computer interaction but the concept has not previously been applied to the interaction of occupants with building controls. Two experiments were carried out to examine the effect of incorporating two different types of simple prompt to reduce post-completion error in the use of light switches in office meeting rooms. Results showed that the prompts were effective and that occupants switched off lights when leaving the room more often when presented with a normative prompt than with a standard injunction. Additionally, an over reliance on PIR sensors to turn off lights after meetings was observed, which reduced their intended energy savings. We conclude that achieving low carbon buildings in practice is not solely a technological issue and that application of user-models from human-computer interaction will encourage appropriate occupant interaction with building controls and help reduce inadvertent energy consumption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is necessary to minimize the environmental impact and utilize natural resources in a sustainable and efficient manner in the early design stage of developing an environmentally-conscious design for a heating, ventilating and air-conditioning system. Energy supply options play a significant role in the total environmental load of heating, ventilating and air-conditioning systems. To assess the environmental impact of different energy options, a new method based on Emergy Analysis is proposed. Emergy Accounting, was first developed and widely used in the area of ecological engineering, but this is the first time it has been used in building service engineering. The environmental impacts due to the energy options are divided into four categories under the Emergy Framework: the depletion of natural resources, the greenhouse effect (carbon dioxide equivalents), the chemical rain effect (sulphur dioxide equivalents), and anthropogenic heat release. The depletion of non-renewable natural resources is indicated by the Environmental Load Ratio, and the environmental carrying capacity is developed to represent the environmental service to dilute the pollutants and anthropogenic heat released. This Emergy evaluation method provides a new way to integrate different environmental impacts under the same framework and thus facilitates better system choices. A case study of six different kinds of energy options consisting of renewable and non-renewable energy was performed by using Emergy Theory, and thus their relative environmental impacts were compared. The results show that the method of electricity generation in energy sources, especially for electricity-powered systems, is the most important factor to determine their overall environmental performance. The direct-fired lithium-bromide absorption type consumes more non-renewable energy, and contributes more to the urban heat island effect compared with other options having the same electricity supply. Using Emergy Analysis, designers and clients can make better-informed, environmentally-conscious selections of heating, ventilating and air-conditioning systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The intensification of the Urban Heat Island effect (UHI) is a problem that involves several fields, and new adequate solutions are required to mitigate its amplitude. The construction sector is strictly related with this phenomenon; in particular, roofs are the envelope components subject to the highest solar irradiance, hence any mitigation strategy should start from them and involve their appropriate design process. For this purpose, cool materials, i.e. materials which are able to reflect a large amount of solar radiation and avoid overheating of building surfaces have been deeply analyzed in the last years both at building and urban scales, showing their benefits especially in hot climates. However, green roofs also represent a possible way to cope with UHI, even if their design is not straightforward and requires taking into account many variables, strictly related with the local climatic conditions. In this context, the present paper proposes a comparison between cool roofs and green roofs for several Italian cities that are representative of different climatic conditions. In search of the most effective solution, the answers may be different depending on the perspective that leads the comparison, i.e. the need to reduce the energy consumption in buildings or the desire to minimize the contribution of the UHI effect.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a study on reduction of energy consumption in buildings through behaviour change informed by wireless monitoring systems for energy, environmental conditions and people positions. A key part to the Wi-Be system is the ability to accurately attribute energy usage behaviour to individuals, so they can be targeted with specific feedback tailored to their preferences. The use of wireless technologies for indoor positioning was investigated to ascertain the difficulties in deployment and potential benefits. The research to date has demonstrated the effectiveness of highly disaggregated personal-level data for developing insights into peopleâs energy behaviour and identifying significant energy saving opportunities (up to 77% in specific areas). Behavioural research addressed social issues such as privacy, which could affect the deployment of the system. Radio-frequency research into less intrusive technologies indicates that received-signal-strength-indicator-based systems should be able to detect the presence of a human body, though further work would be needed in both social and engineering areas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The newly adopted energy efficiency directive (2012/27/EU) highlights the importance of energy efficiency in reaching the Unionâs 2020 targets. The directive commits member states to defining national energy efficiency targets (art. 3), achieving yearly energy savings of 1.5% of the annual energy sales through the energy efficiency obligation scheme (art. 7), and providing a long-term strategy for the building sector that aims at a 3% refurbishment rate for public buildings (art. 4+5). Buildings currently account for 40% of energy use in most countries, putting them among the largest end-use sectors. This report takes a closer look at the best practices for implementing increasing energy efficiency in different regions and countries in Europe. The final aim is to identify some policy tools to be suggested to the region of Dalarna (Dalarna having been chosen as the pilot county in Sweden) as a means of implementing energy efficiency in the building sector. The final objective is to give analysts and decision-makers a better analytical foundation to explore future policy development in the area of buildings to be proposed and tested at the regional level in Dalarna and later at the national level in Sweden.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We compute the leading radiative correction to the Casimir force between two parallel plates in the lambdaPhi(4) theory. Dirichlet and periodic boundary conditions are considered. A heuristic approach, in which the Casimir energy is computed as the sum of one-loop corrected zero-point energies, is shown to yield incorrect results, but we show how to amend it. The technique is then used in the case of periodic boundary conditions to construct a perturbative expansion which is free of infrared singularities in the massless limit. In this case we also compute the next-to-leading order radiative correction, which turns out to be proportional to lambda(3/2).