980 resultados para Nd isotopes


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The circulation and internal structure of the oceans exert a strong influence on Earth's climate because they control latitudinal heat transport and the segregation of carbon between the atmosphere and the abyss (Sigman et al., 2010, doi:10.1038/nature09149). Circulation change, particularly in the Atlantic Ocean, is widely suggested (Bartoli et al., 2005, doi:10.1016/j.epsl.2005.06.020; Haug and Tiedemann, 1998, doi:10.1038/31447; Woodard et al., 2014, doi:10.1126/science.1255586; McKay et al., 2012, doi:10.1073/pnas.1112248109) to have been instrumental in the intensification of Northern Hemisphere glaciation when large ice sheets first developed on North America and Eurasia during the late Pliocene, approximately 2.7 million years ago (Bailey et al., 2013, doi:10.1016/j.quascirev.2013.06.004). Yet the mechanistic link and cause/effect relationship between ocean circulation and glaciation are debated. Here we present new records of North Atlantic Ocean structure using the carbon and neodymium isotopic composition of marine sediments recording deep water for both the Last Glacial to Holocene (35-5 thousand years ago) and the late Pliocene to earliest Pleistocene (3.3-2.4 million years ago). Our data show no secular change. Instead we document major southern-sourced water incursions into the deep North Atlantic during prominent glacials from 2.7 million years ago. Our results suggest that Atlantic circulation acts as a positive feedback rather than as an underlying cause of late Pliocene Northern Hemisphere glaciation. We propose that, once surface Southern Ocean stratification (Sigman, et al., 2004, doi:10.1038/nature02357) and/or extensive sea-ice cover (McKay et al., 2012, doi:10.1073/pnas.1112248109) was established, cold-stage expansions of southern-sourced water such as those documented here enhanced carbon dioxide storage in the deep ocean, helping to increase the amplitude of glacial cycles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the nutrient-rich Southern Ocean, Fe is a vital constituent controlling the growth of phytoplankton. Despite much effort, the origin and transport of Fe to the oceans are not well understood. In this study we address the issue with geochemical data and Nd isotopic compositions of suspended particle samples collected from 1997 to 1999 in the South Atlantic Sector of the Southern Ocean. Al, Th, and rare earth element (REE) concentrations as well as 143Nd/144Nd isotopic ratios in acetic acid-leached particle samples representing the lithogenic fraction delineate three major sources: (1) Patagonia and the Antarctic Peninsula provide material with eNd > -4 that is transported toward the east with the polar and subpolar front jets, (2) the south African shelf, although its influence is limited by the circumpolar circulation and wind direction, can account for material with eNd of -12 to -14 adjacent to South Africa, and (3) East Antarctica provides material with eNd of -10 to -15 to the eastern Weddell Sea and adjacent Antarctic Circumpolar Current. For this region we interpret the Nd isotopic evidence in combination with oceanographic/atmospheric constraints as evidence for supply of significant amounts of terrigenous detritus by icebergs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New and published major and trace element abundances of elastic metasediments (mainly garnet-biotite-plagioclase schists) from the similar to 3.8 Ga Isua Greenstone Belt (IGB), southern West Greenland, are used in an attempt to identify the compositional characteristics of the protoliths of these sediments. Compositionally, the metasediments are heterogeneous with enrichment of LREE (La/Sm-chord = 1.1-3.9) and variable enrichment and depletion of HREE (Gd/Yb-chord = 0.8-4.3). Chondrite-normalized Eu is also variable, spanning a range from relative Eu depletion to enrichment (Eu/Eu* = 0.6-1.3). A series of geochemical and geological criteria provides conclusive evidence for a sedimentary origin, in disagreement with some previous studies that questioned the presence of genuine elastic metasediments. In particular, trace element systematics of IGB metasediments show strong resemblance to other well-documented Archaean clastic sediments, and are consistent with a provenance consisting of ultramafic, malic and felsic igneous rocks. Two schists, identified as metasomatized mafic igneous rocks from petrographic and field evidence, show distinct compositional differences to the metasediments. Major element systematics document incipient-to-moderate source weathering in the majority of metasediments, while signs of secondary K-addition are rare. Detailed inspection of Eu/Eu*, Fe2O3 and CIW (chemical index of weathering) relationships reveals that elevated iron contents (when compared to averages for continental crust) and strong relative enrichment in Eu may be due to precipitation of marine Fe-oxyhydroxides during deposition or diagenesis on the seafloor. Some of the IGB metasediments have yielded anomalous Nd-142 and W-182 isotopic compositions that were respectively interpreted in terms of early mantle differentiation processes and the presence of a meteorite component. Alternatively, W and possibly Nd isotopes could have been affected by thermal neutron capture on the Hadean surface. The latter process was tested in this study by analysis of Sm isotope compositions, which serve as an effective monitor for neutron capture effects. As no anomalous variation from terrestrial values was detected, we infer that isotope systematics (including W-182 and Nd-142) of IGB metasediments were not affected by neutron capture, but reflect decay of radioactive parent isotopes. Copyright (c) 2005 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tang sancai is one of the most important types of Chinese ceramics. To determine the provenance of Tang sancai is important to study ancient trade and other issues. In this paper we compare ICP-MS trace elements and TIMS Sr-Nd isotopes of visibly similar Tang sancai from two major production centres Gongxian and Yaozhou. The variation in contents/ratios of many of > 40 trace elements is small for samples from Gongxian, yet is considerably bigger for that from Yaozhou. However, the variation in Sr-87/Sr-86 and Nd-143/Nd-144 isotopic ratios is very small for samples from both places. Gongxian and Yaozhou samples have distinctive Sr-Nd isotopic and trace element features despite their similarity in major elements, and these analysis data can be interpreted with geochemistry, indicating that Sr and Nd isotopes have great potential in ceramic provenance studies. The distinct characterisation of these samples provides valuable criteria for identifying provenance of Tang sancai of uncertain origin. Two modern fakes are also analysed, and they can as well be distinguished from antique Tang sancai using above criteria. (c) 2005 Published by Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present the first combined dissolved hafnium (Hf) and neodymium (Nd) concentrations and isotope compositions of deep water masses from the Atlantic sector of the Southern Ocean. Eight full depth profiles were analyzed for Hf and twelve for Nd. Hafnium concentrations are generally depleted in the upper few hundred meters ranging between 0.2 pmol/kg and 0.4 pmol/kg and increase to relatively constant values of around 0.6 pmol/kg in the deeper water column. At the stations north of the Polar Front (PF), Nd concentrations increase linearly from about 10 pmol/kg at depths of ~ 200 m to up to 31 pmol/kg close to the bottom indicating particle scavenging and release. Within the Weddell Gyre (WG), however, Nd concentrations are essentially constant at 25 pmol/kg at depths greater than ~ 1000 m. The distributions of both elements show a positive correlation with dissolved silicon implying a close linkage to diatom biogeochemistry. Hafnium essentially shows invariant isotope compositions with values averaging at epsilon-Hf = +4.6, whereas Nd isotopes mark distinct differences between water masses, such as modified North Atlantic Deep Water (NADW, epsilon-Nd = -11 to -10) and Antarctic Bottom Water (AABW, epsilon-Nd = -8.6 to -9.6), but also waters locally advected via the Agulhas Current can be identified by their unradiogenic Nd isotope compositions. Mixing calculations suggest that a small fraction of Nd is removed by particle scavenging during mixing of water masses north of the PF. Nevertheless, the Nd isotope composition has apparently not been significantly affected by uptake and release of Nd from particles, as indicated by mixing calculations. A mixing envelope of an approximated North Pacific and a North Atlantic end-member shows that Nd isotope and concentration patterns in the Lower Circumpolar Deep Water (LCDW) can be fully explained by ~ 30:70 percentage contributions of these respective end-members.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANT-XXIV/3 and ANT-XXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (<0.12 pmol/kg and 10 pmol/kg, respectively), most probably due to the low terrigenous flux in this area and efficient scavenging of Hf and Nd by biogenic opal. In the vicinity of landmasses the dissolved Hf and Nd isotope compositions are clearly labelled by terrigenous inputs. Near South Africa Nd isotope values as low as epsilon-Nd = -18.9 indicate unradiogenic inputs supplied via the Agulhas Current. Further south the isotopic data show significant increases to epsilon-Hf = 6.1 and epsilon-Nd = -4.0 documenting exchange of seawater Nd and Hf with the Antarctic Peninsula. In the open Southern Ocean the Nd isotope compositions are relatively homogeneous (epsilon-Nd ~ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Pasage. The Hf isotope compositions in the entire study area only show a small range between epsilon-Hf = +6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from epsilon-Nd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Atlantis Massif (Mid-Atlantic Ridge, 30°N) is an oceanic core complex marked by distinct variations in crustal architecture, deformation and metamorphism over distances of at least 5 km. We report Sr and Nd isotope data and Rare Earth Element (REE) concentrations of gabbroic and ultramafic rocks drilled at the central dome (IODP Hole 1309D) and recovered by submersible from the southern ridge of the massif that underlie the peridotite-hosted Lost City Hydrothermal Field. Systematic variations between the two areas document variations in seawater penetration and degree of fluid-rock interaction during uplift and emplacement of the massif and hydrothermal activity associated with the formation of Lost City. Homogeneous Sr and Nd isotope compositions of the gabbroic rocks from the two areas (87Sr/86Sr: 0.70261-0.70429 and epsilon-Nd: +9.1 to +12.1) indicate an origin from a depleted mantle. At the central dome, serpentinized peridotites are rare and show elevated seawater-like Sr isotope compositions related to serpentinization at shallow crustal levels, whereas unaltered mantle isotopic compositions preserved in the gabbroic rocks attest to limited seawater interaction at depth. This portion of the massif remained relatively unaffected by Lost City hydrothermal activity. In contrast, pervasive alteration and seawater-like Sr and Nd isotope compositions of serpentinites at the southern wall (87Sr/86Sr: 0.70885-0.70918; epsilon-Nd: -4.7 to +11.3) indicate very high fluid-rock ratios (~20 and up to 10**6) and enhanced fluid fluxes during hydrothermal circulation. Our studies show that Nd isotopes are most sensitive to high fluid fluxes and are thus an important geochemical tracer for quantification of water-rock ratios in hydrothermal systems. Our results suggest that high fluxes and long-lived serpentinization processes may be critical to the formation of Lost City-type systems and that normal faulting and mass wasting in the south facilitate seawater penetration necessary to sustain hydrothermal activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the inception of the international GEOTRACES program, studies investigating the distribution of trace elements and their isotopes in the global ocean have significantly increased. In spite of this large-scale effort, the distribution of neodymium isotopes (143Nd/144Nd) and concentrations ([Nd]) in the high latitude south Pacific is still understudied. Here we report dissolved Nd isotopes and concentrations from 11 vertical water column profiles from the south Pacific between South America and New Zealand. Results suggest that Ross Sea Bottom Water (RSBW) is represented by an epsilon-Nd value of ~ -7, and is thus more radiogenic than Circumpolar Deep Water (epsilon-Nd ~ -8). RSBW and its characteristic epsilon-Nd signature can be traced far into the SE Pacific until progressive mixing with ambient Lower Circumpolar Deep water (LCDW) dilutes this signal north of the Antarctic Polar Front (APF). The SW-NE trending Pacific-Antarctic Ridge restricts the advection of RSBW into the SW Pacific, where bottom water density, salinity, and epsilon-Nd values of -9 indicate the presence of bottom waters of an origin different from the Ross Sea. Neodymium concentrations show low surface concentrations and a linear increase with depth north of the Polar Front. South of the APF, surface [Nd] is high and increases with depth but remains almost constant below ~1000 m. This vertical and spatial [Nd] pattern follows the southward shoaling density surfaces of the Southern Ocean frontal system and hence suggests supply of Nd to the upper ocean through upwelling of Nd-rich deep water. Low particle abundance dominated by reduced opal production and seasonal sea ice cover likely contributes to the maintenance of the high upper ocean [Nd] south of the APF. The reported data highlights the use of Nd isotopes as a water mass tracer in the Southern Ocean, with the potential for paleocenaographic reconstructions, and contributes to an improved understanding of Nd biogeochemistry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids(522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopesNd(t)= –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper provides new data on the evolution of the Caspian Sea and Black Sea from the Last Glacial Maximum until ca. 12 cal kyr BP. We present new analyses (clay mineralogy, grain-size, Nd isotopes and pollen) applied to sediments from the river terraces in the lower Volga, from the middle Caspian Sea and from the western part of the Black Sea. The results show that during the last deglaciation, the Ponto-Caspian basin collected meltwater and fine-grained sediment from the southern margin of the Scandinavian Ice Sheet (SIS) via the Dniepr and Volga Rivers. It induced the deposition of characteristic red-brownish/chocolate-coloured illite-rich sediments (Red Layers in the Black Sea and Chocolate Clays in the Caspian Sea) that originated from the Baltic Shield area according to Nd data. This general evolution, common to both seas was nevertheless differentiated over time due to the specificities of their catchment areas and due to the movement of the southern margin of the SIS. Our results indicate that in the eastern part of the East European Plain, the meltwater from the SIS margin supplied the Caspian Sea during the deglaciation until ∼13.8 cal kyr BP, and possibly from the LGM. That led to the Early Khvalynian transgressive stage(s) and Chocolate Clays deposition in the now-emerged northern flat part of the Caspian Sea (river terraces in the modern lower Volga) and in its middle basin. In the western part of the East European Plain, our results confirm the release of meltwater from the SIS margin into the Black Sea that occurred between 17.2 and 15.7 cal kyr BP, as previously proposed. Indeed, recent findings concerning the evolution of the southern margin of the SIS and the Black Sea, show that during the last deglaciation, occurred a westward release of meltwater into the North Atlantic (between ca. 20 and 16.7 cal kyr BP), and a southward one into the Black Sea (between 17.2 and 15.7 cal kyr BP). After the Red Layers/Chocolate Clays deposition in both seas and until 12 cal kyr BP, smectite became the dominant clay mineral. The East European Plain is clearly identified as the source for smectite in the Caspian Sea sediments. In the Black Sea, smectite originated either from the East European Plain or from the Danube River catchment. Previous studies consider smectite as being only of Anatolian origin. However, our results highlight both, the European source for smectite and the impact of this source on the depositional environment of the Black Sea during considered period.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Motivated by recent spectroscopy data from fission experiments, we apply the projected shell model to study systematically the structure of strongly deformed, neutron-rich, even-even Nd and Sm isotopes with neutron number from 94 to 100. We perform calculations for rotational bands up to spin I = 20 and analyze the band structure of low-lying states with quasiparticle excitations, with emphasis given to rotational bands based on various negative-parity two-quasiparticle (2-qp) isomers. Experimentally known isomers in these isotopes are described well. The calculations further predict proton 2-qp bands based on a 5(-) and a 7(-) isomer and neutron 2-qp bands based on a 4(-) and an 8(-) isomer. The properties for the yrast line are discussed, and quantities to test the predictions are suggested for future experiment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The volcanic rocks of the Rhön area (Central European Volcanic Province, Germany) belong to a moderately alkali basaltic suite that is associated with minor tephriphonolites, phonotephrites, tephrites, phonolites and trachytes. Based on isotope sytematics (87Sr/86Sr: 0.7033–0.7042; 143Nd/144Nd: 0.51279–0.51287; 206Pb/204Pb: 19.1–19.5), the inferred parental magmas formed by variable degrees of partial melting of a common asthenospheric mantle source (EAR: European Asthenospheric Reservoir of Cebriá and Wilson, 1995). Tephrites, tephriphonolites, phonotephrites, phonolites and trachytes show depletions and enrichments in some trace elements (Sr, Ba, Nb, Zr, Y) indicating that they were generated by broadly similar differentiation processes that were dominated by fractionation of olivine, clinopyroxene, amphibole, apatite and titaniferous magnetite ± plagioclase ± alkalifeldspar. The fractionated samples seem to have evolved by two distinct processes. One is characterized by pure fractional crystallization indicated by increasing Nb (and other incompatible trace element) concentrations at virtually constant 143Nd/144Nd ~ 0.51280 and 87Sr/86Sr ~ 0.7035. The other process involved an assimilation–fractional crystallization (AFC) process where moderate assimilation to crystallization rates produced evolved magmas characterized by higher Nb concentrations at slightly lower 143Nd/144Nd down to 0.51275. Literature data for some of the evolved rocks show more variable 87Sr/86Sr ranging from 0.7037 to 0.7089 at constant 143Nd/144Nd ~ 0.51280. These features may result from assimilation of upper crustal rocks by highly differentiated low-Sr (< 100 ppm Sr) lavas. However, based on the displacement of the differentiated rocks from this study towards lower 143Nd/144Nd ratios and modeled AFC processes in 143Nd/144Nd vs. 87Sr/86Sr and 207Pb/204Pb vs. 143Nd/144Nd space assimilation of lower crustal rocks seems more likely. The view that assimilation of lower crustal rocks played a role is confirmed by high-precision double-spike Pb isotope data that reveal higher 207Pb/204Pb ratios (15.62–15.63) in the differentiated rocks than in the primitive basanites (15.58–15.61). This is compatible with incorporation of radiogenic Pb from lower crustal xenoliths (207Pb/204Pb: 15.63–15.69) into the melt. However, 206Pb/204Pb ratios are similar for the differentiated rocks (19.13–19.35) and the primitive basanites (19.12–19.55) implying that assimilation involved an ancient crustal end member with a higher U/Pb ratio than the mantle source of the basanites. In addition, alteration-corrected δ18O values of the differentiated rocks range from c. 5 to 7‰ which is the same range as observed in the primitive alkaline rocks. This study confirms previous interpretations that highlighted the role of AFC processes in the evolution of alkaline volcanic rocks in the Rhön area of the Central European Volcanic Province.