967 resultados para Natural language techniques, Semantic spaces, Random projection, Documents
Resumo:
One of the main challenges to be addressed in text summarization concerns the detection of redundant information. This paper presents a detailed analysis of three methods for achieving such goal. The proposed methods rely on different levels of language analysis: lexical, syntactic and semantic. Moreover, they are also analyzed for detecting relevance in texts. The results show that semantic-based methods are able to detect up to 90% of redundancy, compared to only the 19% of lexical-based ones. This is also reflected in the quality of the generated summaries, obtaining better summaries when employing syntactic- or semantic-based approaches to remove redundancy.
Resumo:
Research on semantic processing focused mainly on isolated units in language, which does not reflect the complexity of language. In order to understand how semantic information is processed in a wider context, the first goal of this thesis was to determine whether Swedish pre-school children are able to comprehend semantic context and if that context is semantically built up over time. The second goal was to investigate how the brain distributes attentional resources by means of brain activation amplitude and processing type. Swedish preschool children were tested in a dichotic listening task with longer children’s narratives. The development of event-related potential N400 component and its amplitude were used to investigate both goals. The decrease of the N400 in the attended and unattended channel indicated semantic comprehension and that semantic context was built up over time. The attended stimulus received more resources, processed the stimuli in more of a top-down manner and displayed prominent N400 amplitude in contrast to the unattended stimulus. The N400 and the late positivity were more complex than expected since endings of utterances longer than nine words were not accounted for. More research on wider linguistic context is needed in order to understand how the human brain comprehends natural language.
Resumo:
Existe um problema de representação em processamento de linguagem natural, pois uma vez que o modelo tradicional de bag-of-words representa os documentos e as palavras em uma unica matriz, esta tende a ser completamente esparsa. Para lidar com este problema, surgiram alguns métodos que são capazes de representar as palavras utilizando uma representação distribuída, em um espaço de dimensão menor e mais compacto, inclusive tendo a propriedade de relacionar palavras de forma semântica. Este trabalho tem como objetivo utilizar um conjunto de documentos obtido através do projeto Media Cloud Brasil para aplicar o modelo skip-gram em busca de explorar relações e encontrar padrões que facilitem na compreensão do conteúdo.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Investigation of the different approaches used by Expert Systems researchers to solve problems in the domain of Mechanical Design and Expert Systems was carried out. The techniques used for conventional formal logic programming were compared with those used when applying Expert Systems concepts. A literature survey of design processes was also conducted with a view to adopting a suitable model of the design process. A model, comprising a variation on two established ones, was developed and applied to a problem within what are described as class 3 design tasks. The research explored the application of these concepts to Mechanical Engineering Design problems and their implementation on a microcomputer using an Expert System building tool. It was necessary to explore the use of Expert Systems in this manner so as to bridge the gap between their use as a control structure and for detailed analytical design. The former application is well researched into and this thesis discusses the latter. Some Expert System building tools available to the author at the beginning of his work were evaluated specifically for their suitability for Mechanical Engineering design problems. Microsynics was found to be the most suitable on which to implement a design problem because of its simple but powerful Semantic Net Knowledge Representation structure and the ability to use other types of representation schemes. Two major implementations were carried out. The first involved a design program for a Helical compression spring and the second a gearpair system design. Two concepts were proposed in the thesis for the modelling and implementation of design systems involving many equations. The method proposed enables equation manipulation and analysis using a combination of frames, semantic nets and production rules. The use of semantic nets for purposes other than for psychology and natural language interpretation, is quite new and represents one of the major contributions to knowledge by the author. The development of a purpose built shell program for this type of design problems was recommended as an extension of the research. Microsynics may usefully be used as a platform for this development.
Resumo:
Natural language understanding (NLU) aims to map sentences to their semantic mean representations. Statistical approaches to NLU normally require fully-annotated training data where each sentence is paired with its word-level semantic annotations. In this paper, we propose a novel learning framework which trains the Hidden Markov Support Vector Machines (HM-SVMs) without the use of expensive fully-annotated data. In particular, our learning approach takes as input a training set of sentences labeled with abstract semantic annotations encoding underlying embedded structural relations and automatically induces derivation rules that map sentences to their semantic meaning representations. The proposed approach has been tested on the DARPA Communicator Data and achieved 93.18% in F-measure, which outperforms the previously proposed approaches of training the hidden vector state model or conditional random fields from unaligned data, with a relative error reduction rate of 43.3% and 10.6% being achieved.
Resumo:
In this demonstration, we will present a semantic environment called the K-Box. The K-Box supports the lightweight integration of knowledge tools, with a focus on semantic tools, but with the flexibility to integrate natural language and conventional tools. We discuss the implementation of the framework, and two existing applications, including details of a new application for developers of semantic workflows. The demonstration will be of interest to developers and researchers of ontology-based knowledge management systems, and semantic desktops, and to analysts working with cross-media information. © 2011 ACM.
Resumo:
Linked Data semantic sources, in particular DBpedia, can be used to answer many user queries. PowerAqua is an open multi-ontology Question Answering (QA) system for the Semantic Web (SW). However, the emergence of Linked Data, characterized by its openness, heterogeneity and scale, introduces a new dimension to the Semantic Web scenario, in which exploiting the relevant information to extract answers for Natural Language (NL) user queries is a major challenge. In this paper we discuss the issues and lessons learned from our experience of integrating PowerAqua as a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step beyond the state of the art on end-users interfaces for Linked Data by introducing mapping and fusion techniques needed to translate a user query by means of multiple sources. Our first informal experiments probe whether, in fact, it is feasible to obtain answers to user queries by composing information across semantic sources and Linked Data, even in its current form, where the strength of Linked Data is more a by-product of its size than its quality. We believe our experiences can be extrapolated to a variety of end-user applications that wish to scale, open up, exploit and re-use what possibly is the greatest wealth of data about everything in the history of Artificial Intelligence. © 2010 Springer-Verlag.
Resumo:
PowerAqua is a Question Answering system, which takes as input a natural language query and is able to return answers drawn from relevant semantic resources found anywhere on the Semantic Web. In this paper we provide two novel contributions: First, we detail a new component of the system, the Triple Similarity Service, which is able to match queries effectively to triples found in different ontologies on the Semantic Web. Second, we provide a first evaluation of the system, which in addition to providing data about PowerAqua's competence, also gives us important insights into the issues related to using the Semantic Web as the target answer set in Question Answering. In particular, we show that, despite the problems related to the noisy and incomplete conceptualizations, which can be found on the Semantic Web, good results can already be obtained.
Resumo:
The semantic web vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language and an ontology as input, and returns answers drawn from one or more knowledge bases (KBs). We say that AquaLog is portable because the configuration time required to customize the system for a particular ontology is negligible. AquaLog presents an elegant solution in which different strategies are combined together in a novel way. It makes use of the GATE NLP platform, string metric algorithms, WordNet and a novel ontology-based relation similarity service to make sense of user queries with respect to the target KB. Moreover it also includes a learning component, which ensures that the performance of the system improves over the time, in response to the particular community jargon used by end users.
Resumo:
The goal of semantic search is to improve on traditional search methods by exploiting the semantic metadata. In this paper, we argue that supporting iterative and exploratory search modes is important to the usability of all search systems. We also identify the types of semantic queries the users need to make, the issues concerning the search environment and the problems that are intrinsic to semantic search in particular. We then review the four modes of user interaction in existing semantic search systems, namely keyword-based, form-based, view-based and natural language-based systems. Future development should focus on multimodal search systems, which exploit the advantages of more than one mode of interaction, and on developing the search systems that can search heterogeneous semantic metadata on the open semantic Web.
Resumo:
The Semantic Web (SW) offers an opportunity to develop novel, sophisticated forms of question answering (QA). Specifically, the availability of distributed semantic markup on a large scale opens the way to QA systems which can make use of such semantic information to provide precise, formally derived answers to questions. At the same time the distributed, heterogeneous, large-scale nature of the semantic information introduces significant challenges. In this paper we describe the design of a QA system, PowerAqua, designed to exploit semantic markup on the web to provide answers to questions posed in natural language. PowerAqua does not assume that the user has any prior information about the semantic resources. The system takes as input a natural language query, translates it into a set of logical queries, which are then answered by consulting and aggregating information derived from multiple heterogeneous semantic sources.
Resumo:
The semantic web (SW) vision is one in which rich, ontology-based semantic markup will become widely available. The availability of semantic markup on the web opens the way to novel, sophisticated forms of question answering. AquaLog is a portable question-answering system which takes queries expressed in natural language (NL) and an ontology as input, and returns answers drawn from one or more knowledge bases (KB). AquaLog presents an elegant solution in which different strategies are combined together in a novel way. AquaLog novel ontology-based relation similarity service makes sense of user queries.
Resumo:
The technology of record, storage and processing of the texts, based on creation of integer index cycles is discussed. Algorithms of exact-match search and search similar on the basis of inquiry in a natural language are considered. The software realizing offered approaches is described, and examples of the electronic archives possessing properties of intellectual search are resulted.
Resumo:
The paper presents an approach to extraction of facts from texts of documents. This approach is based on using knowledge about the subject domain, specialized dictionary and the schemes of facts that describe fact structures taking into consideration both semantic and syntactic compatibility of elements of facts. Actually extracted facts combine into one structure the dictionary lexical objects found in the text and match them against concepts of subject domain ontology.